1) Introduction

• Trajectory of a nuclear collision depends on the time evolution of energy & net-baryon densities. At lower energies like RHIC-BES, trajectory is important for effects from the QCD critical point.
• The Bjorken formula [1] is only valid at high energies, where \(t_1 \) (the crossing time of the two nuclei) is small. This condition does not hold at lower energies [2]. For central Au+Au collisions, at \(\sqrt{s_{NN}} = 50 \) GeV \(d_1 \approx 0.5 \text{ fm/c} \) is not small but comparable to \(t_0 \), so the Bjorken formula cannot be trusted well below this energy.
• Here we extend [3] the Bjorken formula to lower energies by including the finite crossing time.

2) The Analytical Method

Fig.1a shows a collision at finite energy, where the two nuclei have finite thickness along z and cross each other during time \([0, d_1] \), with \(d_2 = 2R_d/\gamma_f \). So the initial energy production takes place over finite widths in both t and z (the shaded area).

We study the energy density averaged over the transverse overlap area at mid space-time-rapidity (\(\eta_r = 0 \)) of central A+A collisions. Let us consider the finite width in t as shown in Fig.1b (but neglect the finite width in z). For a particle produced at time \(t \) to remain in a thin slab -d\(z \leq z \leq d \) at time \(t \), its rapidity needs to satisfy

\[
|\tan(y)| = |y| < \frac{d}{\sqrt{z^2 - d^2}}.
\]

Suppose initial particles have a finite formation time \(\tau_f \), then at any time \(t \geq \tau_f \) the average energy density within the slab is

\[
\epsilon(t) = \frac{1}{d_1} \int_0^{d_2} \int_{-d}^{d} \frac{dE}{dy} \frac{d^2 \sigma}{dy dx} \, dx \, dz.
\]

Here \(\frac{dE}{dy} \frac{d^2 \sigma}{dy dx} \) is the production rate of initial \(\frac{dE}{dy} \) (\(y = 0 \)) at time \(x \); at high energies it is much less sensitive to the uncertainty of \(\frac{d^2 \sigma}{dy dx} \), then we recover the Bjorken formula:

\[
\epsilon_B(t) = \frac{1}{\tau_f} \frac{dE}{dy} \frac{d^2 \sigma}{dy dx}
\]

Next we will take a specific form for the time (or \(x \)) profile of \(\frac{dE}{dy} \frac{d^2 \sigma}{dy dx} \). The simplest is a uniform profile (red curve in Fig.2):

\[
\text{initial energy at } y = 0 \text{ is produced uniformly over a period of time.}
\]

A more realistic profile will have \(\sim 0 \) energy produced at \(x = 0 \) & \(d_1 \) but most energy produced at \(\sim d_1/2 \) (blue curves in Fig.2).

3) Analytical Results

A uniform profile from time \(t_1 \) to \(t_2 \) (with \(t_{21} = t_2 - t_1 \)) gives

\[
\epsilon_{uni}(t) = \frac{1}{A_{t_2 - t_1}} \frac{dE}{dy} \ln \left(\frac{t_1}{\tau_f} \right), \text{ if } t \in [t_1 + \tau_f, t_2 + \tau_f];
\]

\[
\epsilon_{uni}(t) = \frac{1}{A_{t_2 - t_1}} \frac{dE}{dy} \ln \left(\frac{t_2}{\tau_f} \right), \text{ if } t \geq t_1 + \tau_f.
\]

The peak energy density is

\[
\epsilon_{uni}^{\text{max}} = \frac{1}{A_{t_2 - t_1}} \frac{dE}{dy} \ln \left(\frac{1 + t_2}{\tau_f} \right).
\]

At low energies (Fig.3a):

• peak energy density is much lower than the Bjorken formula,
• time evolution of the initial energy density is much longer,
• \(\epsilon_{uni}^{\text{max}} \sim \ln \left(\frac{\tau_0}{\tau_f} \right) \); much less sensitive to \(\tau_f \) than Bjorken’s \(\frac{1}{\tau_f} \).

At high energies (Fig.3b): solution approaches Bjorken formula.

4) Comparison with Numerical Results

We have included finite nuclear thickness to string-melting AMPT [4] to get transport results on the energy density at \(\eta_x \approx 0 \). Fig.4 confirms the key features of our analytical results:

• AMPT without finite thickness \(o = \) Bjorken formula.
• AMPT with finite thickness \(e \sim \) our extension.
• AMPT with finite thickness = AMPT with finite \(t \) but no finite \(z \).

So effect of finite width in \(z \) (neglected in our analytical method) is small, once the finite width in \(t \) is included.

5) Conclusions

• We have extended the Bjorken formula, since it neglects the finite nuclear thickness and thus breaks down at low energies.
• At \(\sqrt{s_{NN}} \ll 50 \) GeV for central Au+Au collisions, the peak energy density \(\epsilon_{uni}^{\text{max}} \) is much lower than the Bjorken formula, but the time evolution of energy density takes much longer.
• \(\epsilon_{uni}^{\text{max}} \) is much less sensitive to the uncertainty of \(\tau_f \).
• \(\epsilon_{uni}^{\text{max}} \) increases much faster with the collision energy \(\sqrt{s} \) than the Bjorken formula (see Fig.4).
• Results from the AMPT model confirm key features of our analytical solutions, now valid at both low and high energies.

References

Acknowledgements
The author acknowledges support from the National Natural Science Foundation of China Grant No. 11628508.