Electromagnetic field and QGP induced yield enhancement

of vector mesons in HIC

Baoyi Chen^{1,2}, Wangmei Zha³, Carsten Greiner¹, Pengfei Zhuang⁴

¹Institut für Theoretische Physik, Goethe-Universität Frankfurt, Germany ²Department of Physics, Tianjin University, Tianjin 300350, China ³Department of Modern Physics, University of Science and Technology of China, China ⁴Department of Physics, Tsinghua University, China

Motivation

Nuclei are accelerated to nearly speed of light, v > 0.9999c in heavy ion collisions at RHIC and LHC energies. AA collisions can generate both

> an extremely hot medium (QGP) and strong electromagnetic fields (EB).

- 1) electromagnetic fields \rightarrow change particle evolution
- 2) electromagnetic fields \rightarrow directly produce mesons (or dileptons)

EB-induced particle productions are usually studied in *Ultra*peripheral Collisions, absent of hadronic collisions and QGP. Why now considering photoproduction EVEN in $b < 2R_A$?

- ullet Experiments already observed NEW enhancement of J/ψ yield in extremely low p_T region in semi-central collisions, calling for new production mechanisms.
- Dileption yield beyond the expection of QGP contribution
- ullet Photoproductions of vector mesons and dileptons are $\propto B^2$ and $\propto B^4$ respectively, and more sensitive to B-field compared with CME. This can give additional constraints on the magnitudes and fluctuations of EB fields at the very beginning of heavy ion collisions.

We give a fully consistent study about vector meson production from both QGP and EB fields, and also find an interesting behavior of $\psi'/J/\psi$ which reveals the importance of BOTH QGP and EB fields in vector meson production.

Photoproduction

Fast moving nucleus carrying electric charges

- ightarrow Lorentz-contracted electromagnetic fields $({f E}
 ightarrow {f E}_T)$
- → treated as "quasi-real" photons.

Figure 1: Schematic figures for interactions between electromagnetic fields and target nucleus.

Then, interactions between EB fields and target nucleus, can be approximated as $\gamma - A$ scatterings. Easier!

1) photon density n(w):

In particle production, electromagnetic fields are treated as longitudinally moving quasi-real photons, proposed by "Equivalent-Photon-Approximation (EPA)"

$$\int_{-\infty}^{\infty} d\tau \int d\mathbf{x}_T \cdot (\mathbf{E}_T \times \mathbf{B}_T) = \int_0^{\infty} dw w n(w) \qquad (1)$$

Here $n(w) \equiv dN_{\gamma}/dw$, and w is the photon energy.

2) photoproduced Ψ with QGP modifications

Coherent photoproduction: photons scatter with entire nucleus and fluctuate into vector mesons (such as ρ^0 , ϕ , J/ψ , ψ'), see Fig.1.

$$\frac{dN_{\Psi}}{dy} = \int d\mathbf{x}_T \ w\tilde{n}_{\gamma}(w, b) \sigma_{\gamma A \to \Psi A} \mathbf{f}^{\text{norm}}(\mathbf{x}_T) \Gamma_{\text{QGP}}(\mathbf{x}_T) + (y \to -y \text{ term})$$
(2)

 $\tilde{n}_{\gamma}(w,b)$ is the averaged value of photon spatial density $dN_{\gamma}/dwd\mathbf{x}_{T}$ in the area of target nucleus, depending on impact parameter b.

 $f^{\text{norm}}(\mathbf{x}_T)\Gamma_{\text{QGP}}(\mathbf{x}_T)$ considers QGP dissociations on the photoproduced Ψ in AA semi-central collisions. Charmonium Ψ rapidity is connected with photon energy by $y = \ln[2w/m_{\Psi}]$ in the lab frame (m_Ψ is the mass of Ψ). For more details, please see [1][2]

Hadroproduction

Charmonium final yields consists of initial production and recombination of $c-\bar{c}$ in QGP dynamical expansions. Charmonium suffers parton inelastic scatterings and color screening in QGP, $g + \Psi \leftrightarrow c + \bar{c}$. New charmonium can also be regenerated by the unbound charms inside QGP (the inverse reaction). Charmonium phase space densities are evolved by our transport model,

$$\frac{\partial f_{\Psi}}{\partial t} + \frac{\mathbf{p}_{\Psi}}{E_{\Psi}} \cdot \nabla f_{\Psi} = -\alpha_{g\Psi \to c\bar{c}} f_{\Psi} + \beta_{c\bar{c} \to g\Psi} \tag{3}$$

 $\alpha_{q\Psi \to c\bar{c}}$ is the decay rate of J/ψ due to gluon inelastic scatterings with color screened binding energy. The typical value of J/ψ decay rate in QGP is ~ 30 MeV (T_c) and ~ 80 MeV $(1.5T_c)$. Excited states suffer much larger decay rate. $\beta_{c\bar{c}\to q\Psi}$ is the charmonium regenerated rate, depends on both dynamical evolutions of ρ_c and $\rho_{\bar{c}}$ inside QGP and also their recombination cross section.

Hydro in	n LHC $\sqrt{s_{NN}} = 2.76$ TeV Pb-Pb, $2.5 < y < 4$		
b(fm)	N_p	$T_0^{ m QGP}/T_c$	$ au_{ m f}^{ m QGP} \ ({ m fm/c})$
0	406	2.6	7.3
9	124	2.1	4.2
10.2	83	1.95	3.5
12	35	1.5	2.3

Figure 2: QGP information in our hydrodynamic model at different centralities

Results

- J/ψ nuclear modification factor in LOW $p_T < 0.3$ GeV/c:
- 1) $R_{AA}^{J/\psi} \sim 1.0$ at $N_p \sim 100$, around 40% of them are from photoproduction
- 2) $R_{AA}^{J/\psi} \gg 1$ and $\to \infty$ at $N_p \to 0$

Figure 3: Dotted line: initial production, dashed lines: recombination of $c + \bar{c} \rightarrow J/\psi + g$ with two different σ_{pp}^{cc} , solid line: production from EB-field, color band: total.

 J/ψ s from different sources dominate in the different p_T in semi-central AA collisions, see Fig.4

Figure 4: p_T dependence of charmonium yields from different sources in AA collisions with impact parameter $b < 2R_A$

In figure of $R_{AA}(p_T)$, photoproduction can make $R_{AA} \sim 1.6$ at $p_T \rightarrow 0$ with a sudden "jump", far above hadronic contribution $R_{AA}^{\rm hadronic} \sim 0.6$.

Dotted line: initial production, Figure 5: dashed lines: regeneration, solid line: photoproduction $\gamma A \to J/\psi A$, color band: total.

• Combined Effects of EB Fields + QGP Effects on $\psi'/J/\psi$ Yield Ratio:

- 1) At high p_T : Ratio < pp value, \leftarrow QGP stronger suppression on the excited state ψ' than J/ψ
- 2) At low p_T : Ratio enhanced, \leftarrow photoproduction Advantage: This ratio does not depend on shadowing effect, etc. A clean probe to study EB fields and QGP effects.

• RHIC Energy (or Isobar Collisions):

Figure 7: Our preliminary calculations. Dashed lines: Only photoproduction, solid lines: photo. + hadro. This is in collaboration with Jiaxing Zhao.

Conclusions

Even in the semi-central collisions with QGP existence, photoproduction still becomes important for charmonium (and ϕ) but only in extremely low p_T bin. With the competition between EB fields and QGP suppression, we propose an interesting behavior of $\psi'/J/\psi$.

Outlook: Is photoproduction also important in most central collisions ? As it is sensitive to EB fields ($\propto B^2$ or B^4), give more constraint on initial EB fields? Photoproduced particle polarization to probe EB-fluctuations?

References

[1] B. Chen, C. Greiner, W. Shi, W. Zha, and P. Zhuang, (2018), 1801.01677. [2] W. Shi, W. Zha, and B. Chen, Phys. Lett. **B777**, 399 (2018), 1710.00332.