QCD thermodynamics from SU(3) parity-doublet quark-hadron chiral model

Anton Motornenko^{1,2}, S. Schramm², J. Steinheimer², V. Vovchenko^{1,2}, and H. Stöcker^{1,2,3}

¹Institut für Theoretische Physik, Goethe Universität, Frankfurt am Main, Germany

²Frankfurt Institute for Advanced Studies, Giersch Science Center, Frankfurt am Main, Germany

³GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

MODEL DESCRIPTION

SU(3) parity-doublet quark-hadron chiral model is a consistent approach to describe QCD statistical and thermodynamical properties on different scales [1,2].

Main ingredients of the model:

- Mean field approximation: Â → ⟨A⟩
- Baryons of SU(3) octet interact via scalar (σ,ζ) and vector $(\omega, \varrho, \varphi)$ mesons within non-linear sigma model:

$$\mathcal{L}_{\mathrm{B}} = \sum_{i} (\bar{B}_{\mathrm{i}} i \partial \!\!\!/ B_{\mathrm{i}}) + \sum_{i} (\bar{B}_{\mathrm{i}} m_{\mathrm{i}}^{*} B_{\mathrm{i}})$$

$$+ \sum_{i} (\bar{B}_{\mathrm{i}} \gamma_{\mu} (g_{\omega \mathrm{i}} \omega^{\mu} + g_{\rho \mathrm{i}} \rho^{\mu} + g_{\phi \mathrm{i}} \phi^{\mu}) B_{\mathrm{i}}) ,$$

 Symmetry among parity partners is restored at finite $\mu_{\rm B}$ where scalar fields vanish:

$$m_{i\pm}^* = \sqrt{\left[(g_{\sigma i}^{(1)} \sigma + g_{\zeta i}^{(1)} \zeta)^2 + (m_0 + n_s m_s)^2 \right]}$$

 $\pm g_{\sigma i}^{(2)} \sigma \pm g_{\zeta i}^{(2)} \zeta$,

• σ , ζ drive chiral symmetry breaking with the following potential V:

$$V = V_0 + \frac{1}{2}k_0(\sigma^2 + \zeta^2) - k_1(\sigma^2 + \zeta^2)^2 + k_2(\sigma^4/2 + \zeta^4) + k_6(\sigma^6 + 4\zeta^6)$$

 Quarks contribute to grand canonical potential within PNJL-type description with Polyakov loop Φ as an order parameter for deconfinetment:

$$\Omega_{\mathbf{q}} = -T \sum_{\mathbf{i} \in O} \frac{\gamma_{\mathbf{i}}}{(2\pi)^3} \int d^3k \ln \left(1 + \Phi \exp \frac{E_{\mathbf{i}}^* - \mu_{\mathbf{i}}}{T} \right)$$

where mean fields generate effective masses:

$$m_{\mathbf{q}}^* = g_{\mathbf{q}\sigma}\sigma + \delta m_{\mathbf{q}} + m_{0\mathbf{q}}$$
$$m_{\mathbf{s}}^* = g_{\mathbf{s}\zeta}\zeta + \delta m_{\mathbf{s}} + m_{0\mathbf{q}},$$

and dynamics of Φ are controlled by effective potential *U*:

$$U = -\frac{1}{2}a(T)\Phi\Phi^*$$

$$+ b(T)\log[1 - 6\Phi\Phi^* + 4(\Phi^3 + \Phi^{*3}) - 3(\Phi\Phi^*)^2],$$

$$a(T) = a_0T^4 + a_1T_0T^3 + a_2T_0^2T^2, \quad b(T) = b_3T_0^3T$$

 plus PDG list of hadrons with excluded volume corrections for both baryons and mesons:

$$\rho_i = \frac{\rho_i^{\text{id}}}{1 + \sum_i v_j \rho_j^{\text{id}}}$$

PHASE DIAGRAM

Two low-temperature critical points associated with:

- nuclear liquid-gas phase transition;
- chiral symmetry restoration.

At T>20 MeV transitions between phases are driven by **smooth crossovers** (red lines in plot).

At high values of μ_B there is a crossover transition to **quark rich phase** with $n_q/n_B \rightarrow 1$ where $\Phi \rightarrow 1$.

BARYON KURTOSIS STRUCTURE

- At experimentally accessible region (i.e. for weakly interacting hadron-resonance gas) deviations from baseline are driven by remnants of nuclear liquid-gas phase transition [5].
- Same for crossover at μ_B =0: behavior of χ^B_4/χ^B_2 at crossover region is mainly driven by remnants of nuclear liquid-gas phase transition.
- Effects from chiral symmetry restoration and transition to quark-dominated phase are far away in T and $\mu_{\rm B}$.

ISENTROPIC TRAJECTORIES FROM SHOCK WAVE SOLUTION

Entropy produced in a heavy ion collision — from Taub adiabat and then isentropic expansion until freezeout.

APPLICATION TO NEUTRON STARS

Model gives an equation of state for cold nuclear matter in β -equilibrium — necessary input for modeling neutron stars.

 Produces a mass-radius relation that is in agreement with known properties of neutron stars.

Properties at $\mu_{R}=0$

To apply model at high T the parameters of quark sector (parameters of Polyakov potential and quark couplings to scalar fields) were tuned to reproduce the trace anomaly I from lattice data [3,4].

REFERENCES

- [1] J. Steinheimer, S. Schramm and H. Stoecker, J.Phys. G38, 035001 (2011) [arXiv:1009.5239 [hep-ph]]
- Steinheimer, S. Schramm and H. Stoecker, Phys. Rev. C 84, 045208 (2011) [arXiv:1108.2596 [hep-ph]]
- Wuppertal-Budapest collaboration, arXiv:1112.4416, arXiv:1309.5258, arXiv:1507.04627
- HotQCD collaboration, arXiv:1203.0784, arXiv:1407.6387, arXiv:1701.04325
- [5] V. Vovchenko, L. Jiang, M. I. Gorenstein and H. Stoecker, arXiv:1711.07260 [nucl-th]
- [6] Ongoing work

SUMMARY

- The model predicts a **rich phase diagram** with two critical points at low temperature region;
- Nuclear liquid-gas phase transition is a main source of fluctuations in the crossover region;
- Transitions to chirally restored phase, and to quark dominated phases are at very high values of chemical potential that are inaccessible at experiment;
- SU(3) parity doublet quark-hadron is a consistent model for both hot QCD matter in heavy-ions collisions and cold isospin asymmetric matter inside of neutron stars.

FIAS Frankfurt Institute for Advanced Studies

