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• Improving the development of Inertial Confinement Fusion(ICF), which is hindered by Rayleigh–Taylor instabilities.
•We offer a configuration model and analize it for direct igni-tion without an ablator.

Objective

Alternatives in our investigations:
• same amount of DT fuel, without compression of radius R = 640 µm
•without ablator layer as in [11, 12]
• target density is 1.062 g/cm3
• absorptivity αK ≈ 8 cm−1
Simple approximation

The sphere of the fuel, with an internal point at radius r. Let us chose the
x-axis so that it passes through the point at r and the center of the sphere.Then let us chose a point on the sphere, and the angle of this point from the
x-axis is denoted by Θ. Then the length between this surface point and the
internal point at r is:

ζ = (R2 + r2 − 2Rr cos Θ)1/2 (1)

Considerations for the target

The propagation timefrom the surface point tothe point at r equals τ =
ζ/c.
The propagation timefrom the surface point tothe point at r equals τ =
ζ/c.
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↑ The boundaries of the integration domains, do-main for the smallest τ -values cannot receive ra-diation, because the radiation started at (R−r)/cearlier and it reaches the internal point at r later.

We intend to calculate the temperature distribution,
T (r, t), within the sphere, as a function of time, t,and the radial distance from the center of thesphere, i.e. radius r.We have two steps of the evaluation:
•we calculate how much energy can reach a givenpoint at r from the outside surface of the sphere.
•we add up the accumulated radiation at position
r, we integrate dU(r, t)/dt from t = 0, for each
spatial position.
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↑ The temperature distribution in function ofdistance and time.

Step 1:The radiation at distance ζ is decreasing as 1/ζ2. Thetotal radiation reaching point r from the ribbon at Θ is
dU(r, t) ∝ 1

ζ2δ(ζ−√R2+r2−2rR cos Θ) , (2)
we integrate this for the surface of all ribbons.Step 2:Neglecting the compression and assuming constant
specific heat cv , energy of the pulse Q =2MJ (4π)−1(·640µm)−2 (10ps)−1 and varying absorptiv-ity:
kB T (r, t) = 2πQR
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Simplified model and its evaluation

Temperature distribution in function of r and t, dotted line is the light cone.The absorption coefficient is linearly changing with the radius. In the center,
r = 0, αK = 30 cm−1 while at the outside edge αK = 8 cm−1. Temperatureis in units of T1 = H · R = 272 keV, and Tn = n · T1. The stars on thetemperature contour lines indicate the transition from space-like front atthe outside edge to time-like front in the middle.

Numerical solution of the model for rapid ignition

• In this model estimate, we have
neglected the compression ofthe target solid fuel ball, as well
as the reflectivity of the targetmatter.
•The relatively small absorptivitymade it possible that the radia-

tion could penetrate the wholetarget.
•The characteristic temperaturewas T1 = 272 keV, below thatthe ignition surface is time-like

hyper-surface, where instabili-
ties cannot occur.
•The detonation at a higher criti-cal temperatures, Tc > T3 occursafter the radiation reaches fromthe other side.

Discussion

Conclusion It is important to use the proper relativistic treatment to optimizethe fastest, more complete ignition, with the least possibility of instabilities.Conclusion It is important to use the proper relativistic treatment to optimizethe fastest, more complete ignition, with the least possibility of instabilities.


