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Abstract

Anisotropic flow plays a crucial role to characterize the momentum anisotropy of the final state particles. In order to probe the properties of the system created in high
multiplicity pp collisions at LHC energies, we study within the percolation color sources, the effects of initial state geometry, profile distribution, size and eccentricity

fluctuations in pp collisions at the LHC energies. The results on the higher harmonic flow modes shown how the initial state geometry and the density of color string sources
vary significantly the contribution of the higher flow modes (vn) due to the size effect. The correlation of the higher flow harmonics with the corresponding η/s is compared

with hydrodynamic calculations.

Introduction
Flow coefficients in relativistic heavy ion collisions at RHIC and LHC are now a well establish signature
of hydrodynamic behavior of the strongly interacting Quark Gluon Plasma. v2 is commonly assumed as
an hydrodynamic response to the initial anisotropy ε2 of the initial density profile. Also the statistical
properties of anisotropic flow had been studied by several collaborations. Recently in high energy pp
and pA an anisotropy azimuthal correlation has been observed in high multiplicity collisions similar to
the one measured in AA collisions. The measured azimuthal structure is long range (namely ridge), also
it has been found to be collective, correlating almost to all particles in the event. In the case of v2 the
values in pp and pPb seem to be independent of the multiplicity, also the mass dependence of identified
particles in v2 also suggest the production of particles from a collective moving source, which origin is
still not completely determined. There are models of hydrodynamics, parton transport which assume an
initial anisotropy in position or momentum space and uses strong final state interactions to transpose the
final anisotropy in momentum space. Other models suggest the presence of strong interactions in the
initial stage before particles are produced, in agreement with the ridge structure (initial interactions of
gluons inside the projectile). Among the models which follow this scheme are CGC, glasma, color field
domains, and also the String Pecolation Model (SPM) which is the framework on which we present a
study on anisotropic flow from Initial state geometry in pp collisions at LHC energies.
Color String Percolation Model
Particle production sources on the String Percolation Model (SPM) are color strings stretching between
the colliding hadrons. The stretched strings break and decay into new partons which produce new strings
(Schwinger mechanism)[1-3].

Figure 1: Representative scheme of cluster formation and percola-
tion

By increasing the energy or the system
size, the string density will increase and
the strings will start to overlap to form
macroscopic clusters. When a critical
disc density ζt ' 1.12 − 1.5 is reached
(homogenous or Woods-Saxon nuclear
distribution profile), a connected system

is created which marks a phase transition. The transverse string density is defined as: ζt =
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Another important parameter is the color reduction factor, which is the geometric scaling function that
reduces the color production clusters with the energy and the number of participants. F (ζt) =

√
1−e−ζt
ζ t

Figure 2: Represen-
tative scheme of the
color string between
partons.

Monte-Carlo model bounded percolating system for
different geometries
To explore the effects on the initial geometry, we perform a study on the finite
size effects on the string density order parameter, in the context of small colli-
sions systems for different initial number of strings being different multiplicity
classes, using 3 different profile functions.

We fix the number of strings and the geometry boundary, as we change the
surface of the overlapping area, we get variations in the filling factor. So, the
dimension of S can be written as a function of η, N and the geometry. For an n-
sides regular polygon boundary, the string density is given by η =

4Nπr20 tan(π/n)
nl2

where r0 is the radius of the small discs or strings and l is the length of the sides
of the regular polygon. So that the dimension of the regular polygon of n-sides

witch confines the system is given by l =
√

4Nπ tan(π/n)
nη r0. To obtain εn, we

use 2 different profile functions to distribute the strings in the different geome-
tries, uniform and a Gaussian for a more realistic case. For ε2 elliptic boundary, we use semi-axes given

by a2 =
r20N

η
√
1−ε2

, b2 =
r20N
√
1−ε2
η , being a and b are the major and the minor semi-axes, respectively,

and ε is the eccentricity. Due to no periodic boundary condition for strings systems, to establish the
emergence of the spanning cluster. Similarly, as in Ref. [4], we inscribe a polygon small enough so that
its sides are at a distance equivalent to the string diameter 2r0 from the boundary. If there is a spanning
cluster in the string system, then we compute the percolation probability as the rate between the number
of strings belonging to the spanning cluster and the total number of strings in the system. With the
Gaussian distribution function, defined as follow: f (x, y) = 1

2πσxσy
exp
[
−
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(x−x0)2
σ2x

+
(y−y0)2
σ2y

)]

Figure 3: Left side shows the percolation probability dependence on the geometry of the initial state for systems in the
Uniform model with N =13, 55, 96 and 500. Rigth side of the figure shows the percolation threshold dependence on the
initial geometry state and the number of strings in the system.

Figure 4: particle production dependence on the geometry of the initial state for systems.

Figure 5: Scheme of azimuthal production for εn.

Now we can relate the particle production for the dif-
ferent initial geometry modes that are shown in the above
figure to calculate the contribution due to geometry fluc-
tuation of the initial anisotropy εn defined in a similar
manner as in reference [5].

εn = εne
inϕn =

∫
rnenϕζ t(r, ϕ)rdrdϕ∫
rnρ(r, ϕ)rdrdϕ

(1)

Where ζt is the transverse string density, and with the
usual polar coordinates in the transverse plane. By scal-
ing to be able to comparethe trend with the prediction of
n predictions from Monte-Carlo Glauber, IP-Glasma and
the results from [4] for the fit to the ATLAS data.

t
η

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

nε

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1ε 
2ε 
3ε 
4ε 
5ε 

Figure 6: Comparison of the mean initial anisotropy εn with the cal-
culation obtained in Ref. [5]. Note that we are comparing εn vs initial
string density which is proportional to the centrality of the collision.

Note that for this model there is dependence on the tem-
perature and so with the string density that due to the initial geometry is also modify for small collisions
systems as shown in Figure.

Figure 7: Maximum deviation for shear and bulk viscosity due to initial anisotropy.

Initial geometry effects shown to be significant on small symmetric collision systems, their contribu-
tion to the flow by the fluctuation of the initial anisotropy seem to have a universal trend, which can be
correlated to the decrease for the less initial string populated systems on the shear viscosity but not for
the bulk viscosity. This is expected as we will have an increase on the differences o the velocities of the
edited particles generating resistance to the moving but not a change on the degree of compressibility,
which is intrinsic for the created medium.

Conclusions
Initial geometry effects show to be significant on small symmetric collision systems, their contribution
to the flow by the fluctuation of the initial anisotropy seem to have a universal trend, which can be
correlated to the decrease for the less initial string populated systems on the shear viscosity but not for
the bulk viscosity. This is expected as we will have an increase on the differences o the velocities of the
emitted particles generating resistance to the moving but not a change on the degree of compressibility,
which is intrinsic for the formed medium.
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