Quarkonium production in nuclear collisions

Rongrong Ma (BNL)
Why Quarkonium?
Why Quarkonium?

- **Early creation:** experience entire evolution of quark-gluon plasma
Why Quarkonium?

- **Early creation:** experience entire evolution of quark-gluon plasma
- **Proposed signature of deconfinement:** quark-antiquark potential color-screened by surrounding partons → *dissociation*

 - J/ψ suppression was proposed as a direct proof of QGP formation

\[
r_{q\bar{q}} \sim 1 / E_{\text{binding}} > r_D \sim 1 / T
\]

T. Matsui and H. Satz
PLB 178 (1986) 416
Why Quarkonium?

- **Early creation**: experience entire evolution of quark-gluon plasma
- **Proposed signature of deconfinement**: quark-antiquark potential color-screened by surrounding partons → *dissociation*
 - *J/ψ* suppression was proposed as a direct proof of QGP formation

\[r_{q\bar{q}} \sim \frac{1}{E_{\text{binding}}} > r_D \sim \frac{1}{T} \]

- “Thermometer”: different states dissociate at different temperatures → *sequential suppression*

<table>
<thead>
<tr>
<th></th>
<th>J/ψ</th>
<th>ψ(2S)</th>
<th>Y(1S)</th>
<th>Y(2S)</th>
<th>Y(3S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_b (MeV)</td>
<td>~ 640</td>
<td>~ 60</td>
<td>~ 1100</td>
<td>~ 500</td>
<td>~ 200</td>
</tr>
</tbody>
</table>

T. Matsui and H. Satz
PLB 178 (1986) 416

05/18/2018
Rongrong Ma (BNL), QM2018
Other effects

- **(Re)generation**
 - *Deconfinement is a prerequisite*
 - Depend on species, energy, p_T, etc
- Medium-induced energy loss
 - Color-octet states; parton fragmentation
- Formation time
- **Feed-down contributions**
The Complications

Other effects

• (Re)generation
 – *Deconfinement is a prerequisite*
 – Depend on species, energy, p_T, etc
• Medium-induced energy loss
 – Color-octet states; parton fragmentation
• Formation time
• Feed-down contributions

Cold nuclear matter effects (CNM)

• nPDF: shadowing/anti-shadowing
• Coherent energy loss
• Nuclear absorption
• Interact with co-movers

K. Eskola, et. al, EPJC 77 (2017) 163

05/18/2018
Rongrong Ma (BNL), QM2018
Experimental Quarkonium Talks at QM2018

- Quarkonium measurements in nucleus-nucleus collisions with ALICE – **P. Dillenseger** *(Mon. 16:30)*
- Quarkonium production in p-A collisions with ALICE – **B. Paul** *(Wed. 16:50)*
- Probing QCD deconfinement with sequential quarkonium suppression of three $\Upsilon(nS)$ states with the CMS detector – **S. Tuli** *(Tue. 11:30)*
- Beyond nPDF effects: prompt J/ψ and $\psi(2S)$ production in pPb collisions with CMS – **G. Oh** *(Wed. 17:10)*
- Quarkonia production in large and small systems measured by ATLAS – **J. Lopez** *(Mon. 16:50)*
- Heavy Flavor production measurements in proton-lead and fixed target collisions at LHCb – **S. Chen** *(Tue. 12:50)*
- Upsilon Measurements in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV with the STAR Experiment – **P. Wang** *(Tue. 11:10)*
- Recent Quarkonia Studies from the PHENIX Experiment – **J. Durham** *(Mon. 18:10)*
pp Collisions

pA/dA Collisions

AA Collisions
Quarkonium Production in pp

\(\Upsilon(1S)\) in \(p+p @ 7\,\text{TeV}\)

- CGC: addition of Sudakov summation can describe the \(\Upsilon(1S)\) production at low \(p_T\)
Quarkonium Production in pp

\(\Upsilon(1S) \) in p+p @ 7 TeV

- CGC: addition of Sudakov summation can describe the \(\Upsilon(1S) \) production at low \(p_T \)
- \(J/\psi \) production is accompanied by other hadrons
 - PYTHIA disagrees with data

\(J/\psi \) FF in p+p @ 5.02 TeV

Wed. 17:10 G. Oh

Wed. 17:30
K. Watanabe
pp Collisions

pA/dA Collisions

AA Collisions
Large-y J/ψ in small system at RHIC

- $p/^{3}\text{He}$-going: about 10-20% suppression with Au nuclei. Consistent with shadowing expectation
- Au/Al-going: indication of suppression in $p+Au$ collisions?
J/ψ Production in pPb

- Low p_T: significant suppression; High p_T: much smaller CNM effects
- While consistent with nPDF effects, data provide constraints on gluon distribution at low-x.

ALICE-PUBLIC-2018-007
LHCb: PLB 774 (2017) 159
$J/\psi Q_{pPb}$ in Centrality Bins: data vs. model

- Models include nPDF or energy loss effects are not able to reproduce the J/ψ modification, especially for central pPb collisions.

- Need to go back to the drawing board
J/ψ Anisotropy in pPb

- Significant J/ψ v_2 observed in $2 < p_T < 7$ GeV/c in high-multiplicity pPb collisions

References

- CMS: HIN-18-010
- ALICE: PLB 780 (2018) 7
J/ψ Anisotropy in pPb

- Significant J/ψ v₂ observed in 2 < p_T < 7 GeV/c in high-multiplicity pPb collisions
- Same situation as other hard probes: large v₂ but no significant suppression
 - Is it flow or initial state effect or something else?

05/18/2018
Rongrong Ma (BNL), QM2018
\(\Upsilon(1S) \) Suppressed in \(pPb \)

- \(\Upsilon(1S) \): 30-40\% suppression at low \(p_T \)
- Need to be taken into account when interpreting results in PbPb collisions
\(\Upsilon(2S+3S) \) are More Suppressed

- Additional 25-35\% suppression for excited states
- Final-state effects affect the ground and excited states differently
p+A Summary

pA collisions

- Significant suppression at low p_T for quarkonium
 - Need to be taken into account when interpreting measurement in AA collisions
 - Models (nPDF, energy loss) having difficulties to reproduce more differential measurements
- Excited quarkonium states more suppressed due probably to final-state effects
 - Needed for determine CNM effects for direct $\Upsilon(1S)$
- Non-zero $J/\psi \, v_2$ observed in intermediate p_T region at the LHC energy
 - Collective motion for J/ψ. What is the origin?
pp Collisions
pA/dA Collisions
AA Collisions
Low-p_T J/ψ in $Xe+Xe$

- Similar level of suppression seen in $Xe+Xe$ and $Pb+Pb$
- Transport model consistent with data: interplay between dissociation and regeneration
High-p_T J/ψ: RHIC vs. LHC

- Unlike low p_T, R_{AA} decreases towards central collisions
 - CNM & regeneration effects small
- $R_{AA}^{RHIC} \gtrsim R_{AA}^{LHC/2.76\text{TeV}} \gtrsim R_{AA}^{LHC/5.02\text{TeV}}$

Dissociation In Effect

Rongrong Ma (BNL), QM2018

05/18/2018

CMS: JHEP 05 (2012) 063
CMS: arXiv:1712.08959

23
An increasing trend is seen in J/ψ R_{AA} vs. p_T

J/ψ R_{AA} follows charged-hadron R_{AA} above 12 GeV/c.
Data are consistent with both color-screening and energy loss scenarios.

Data at higher p_T with better precision are crucial to distinguish between models.
LHC: J/ψ v₂ vs. pₜ

- **J/ψ v₂** persists up to 20 GeV/c; not described by transport models
- **Due to path-length dependence of parton energy loss?**

Mon. 16:30 P. Dillenseger

Mon. 16:50 J. Lopez

05/18/2018
Rongrong Ma (BNL), QM2018

ATLAS-CONF-2018-013
ALICE: PRL 119 (2017) 242301
LHC: J/ψ v₂ vs. p_T

- J/ψ v₂ persists up to 20 GeV/c; not described by transport models
- Due to path-length dependence of parton energy loss?
- However, different suppression for ψ(2S) and J/ψ at high p_T. Hmmm …
Sequential Suppression for Charmonium

- $R_{AA}\psi(2S) < R_{AA}\ J/\psi$ across p_T and cent. bins \rightarrow sequential suppression
- **Tension in central collisions?**

CMS: arXiv:1712.08959

ATLAS: arXiv:1805.04077

05/18/2018

Rongrong Ma (BNL), QM2018
Sequential Suppression for Bottomonium

- **Au+Au @ 200 GeV**
 - \(R_{AA}^{peri} > R_{AA}^{cent} \) : increasing hot medium effects
 - RHIC: \(R_{AA}^{\Upsilon(2S+3S)} < R_{AA}^{\Upsilon(1S)} \) in 0-10% central
 - LHC: \(R_{AA}^{\Upsilon(3S)} < R_{AA}^{\Upsilon(2S)} < R_{AA}^{\Upsilon(1S)} \) in all centrality

- **Pb+Pb @ 5.02 TeV**

CMS: CMS-HIN-16-023

05/18/2018
Rongrong Ma (BNL), QM2018
Inclusive $\Upsilon(1S) R_{AA}$: RHIC vs. LHC

$0.2 \text{ TeV vs. } 2.76 \text{ TeV}$

- $R_{AA}^{\text{RHIC}} \sim R_{AA}^{\text{LHC/2.76TeV}}$: likely due to CNM + suppression of excited states
Inclusive \(\Upsilon(1S) \) \(R_{AA} \): RHIC vs. LHC

0.2 TeV vs. 2.76 TeV vs. 5.02 TeV

- \(R_{AA}^{RHIC} \sim R_{AA}^{LHC/2.76 TeV} \): likely due to CNM + suppression of excited states
- \(R_{AA}^{LHC/2.76 TeV} > R_{AA}^{LHC/5.02 TeV} \): onset of direct \(\Upsilon(1S) \) suppression?

STAR Preliminary

STAR Au+Au@200 GeV, \(|y|<0.5 \)

CMS Pb+Pb@2.76 TeV, \(|y|<2.4 \)

CMS: CMS-HIN-16-023
CMS: PLB 770 (2017) 357

05/18/2018

Rongrong Ma (BNL), QM2018
Excited ΥR_{AA}: RHIC vs. LHC

0.2 TeV vs. 2.76 TeV

- $R_{AA}^{RHIC} \sim R_{AA}^{LHC/2.76 TeV}$: indication of less melting at RHIC peripheral?
Excited ΥR_{AA}^*: RHIC vs. LHC

0.2 TeV vs. 2.76 TeV vs. 5.02 TeV

- $R_{AA}^{RHIC} \gtrsim R_{AA}^{LHC/2.76TeV}$: indication of less melting at RHIC peripheral?
- $R_{AA}^{LHC/2.76TeV} \sim R_{AA}^{LHC/5.02TeV}$: complete dissociation in the medium

CMS: CMS-HIN-16-023
CMS: PLB 770 (2017) 357

STAR Preliminary

CMS Pb+Pb @ 2.76 TeV, |y|<2.4

(2S): CMS Pb+Pb @ 2.76 TeV, |y|<2.4

(3S): CMS Pb+Pb @ 2.76 TeV, |y|<2.4

(2S+3S): STAR Au+Au @ 200 GeV, |y|<0.5

Υ (2S): CMS Pb+Pb @ 2.76 TeV, |y|<2.4

Υ (3S): CMS Pb+Pb @ 2.76 TeV, |y|<2.4

N_{coll} uncertainty

95% C.L.
• T-dependent binding energy; Kinetic rate equation; Include CNM and regeneration

<table>
<thead>
<tr>
<th>Υ</th>
<th>$\Upsilon(1S)$</th>
<th>$\Upsilon(2S)$</th>
<th>$\Upsilon(3S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{disso} (MeV)</td>
<td>500</td>
<td>240</td>
<td>190</td>
</tr>
</tbody>
</table>

| \sqrt{s} (TeV) | 0.2 | 2.76 | 5.02 |
| T_{0}^{QGP} (MeV) | 310 | 555 | 594 |
ϒ Suppression: Data vs. TAMU model

- T-dependent binding energy; Kinetic rate equation; Include CNM and regeneration

<table>
<thead>
<tr>
<th></th>
<th>ϒ(1S)</th>
<th>ϒ(2S)</th>
<th>ϒ(3S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{disso} (MeV)</td>
<td>500</td>
<td>240</td>
<td>190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\sqrt{s} (TeV)</th>
<th>0.2</th>
<th>2.76</th>
<th>5.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0^{QGP} (MeV)</td>
<td>310</td>
<td>555</td>
<td>594</td>
</tr>
</tbody>
</table>

- Good description of ϒ suppression from RHIC to LHC energies.

X. Du, M. He, R. Rapp PRC 96 (2017) 054901

CMS: CMS-HIN-16-023
CMS: PLB 770 (2017) 357
\(\Upsilon \text{ Suppression: Data vs. TAMU model} \)

- T-dependent binding energy; Kinetic rate equation; Include CNM and regeneration

\[
\begin{array}{|c|c|c|}
\hline
\Upsilon(1S) & \Upsilon(2S) & \Upsilon(3S) \\
\hline
T_{\text{disso}} (\text{MeV}) & 500 & 240 & 190 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\sqrt{s} (\text{TeV}) & 0.2 & 2.76 & 5.02 \\
\hline
T_0^{\text{QGP}} (\text{MeV}) & 310 & 555 & 594 \\
\hline
\end{array}
\]

- Good description of \(\Upsilon \) suppression from RHIC to LHC energies.
- Non-negligible regeneration, especially for \(\Upsilon(2S) \)

05/18/2018

Rongrong Ma (BNL), QM2018
yme Suppression: Data vs. lattice-potential model

- Complex potential (lQCD); aHydro medium; No regeneration or CNM

<table>
<thead>
<tr>
<th>(T_{\text{disso}}) (MeV)</th>
<th>(\Upsilon(1S))</th>
<th>(\Upsilon(2S))</th>
<th>(\Upsilon(3S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{s}) (TeV)</td>
<td>0.2</td>
<td>2.76</td>
<td>5.02</td>
</tr>
<tr>
<td>(T_0^{QGP}) (MeV)</td>
<td>440</td>
<td>545</td>
<td>632</td>
</tr>
</tbody>
</table>
ϒ Suppression: Data vs. lattice-potential model

- Complex potential (lQCD); aHydro medium; No regeneration or CNM

<table>
<thead>
<tr>
<th>Y(1S)</th>
<th>Y(2S)</th>
<th>Y(3S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{disso} (MeV)</td>
<td>600</td>
<td>230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\sqrt{s} (TeV)</th>
<th>0.2</th>
<th>2.76</th>
<th>5.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0^{QGP} (MeV)</td>
<td>440</td>
<td>545</td>
<td>632</td>
</tr>
</tbody>
</table>

- Describe RHIC data reasonably well
- Lies consistently below the experimental data at LHC. Regeneration to rescue?

05/18/2018
Rongrong Ma (BNL), QM2018
AA Summary

AA collisions

- Low p_T: new J/ψ data in Xe+Xe compatible with Pb+Pb \rightarrow regeneration
- High p_T: increasing suppression towards central collisions \rightarrow dissociation
- Even higher p_T: increasing R_{AA} and non-zero v_2 \rightarrow similar to charged hadrons

- Multi-dimensional measurements of Υ suppression from RHIC and LHC with improved precision \rightarrow sequential suppression
 - Powerful tests to model calculations
- Hint of direct $\Upsilon(1S)$ suppression at 5.02 TeV?
Discussion

• \(p+p \): production mechanism still not fully understood
 – Efforts are needed both experimentally and theoretically: \(J/\psi \) in jets; Improved Color Evaporation Model …
Discussion

• p+p: production mechanism still not fully understood
 – Efforts are needed both experimentally and theoretically: J/ψ in jets; Improved Color Evaporation Model …

• p+A: CNM effects on quarkonium fairly well understood
 – Need to think hard about the sizable $J/\psi v_2$
Discussion

• **p+p**: production mechanism still not fully understood
 – Efforts are needed both experimentally and theoretically: J/ψ in jets; Improved Color Evaporation Model …

• **p+A**: CNM effects on quarkonium fairly well understood
 – Need to think hard about the sizable $J/\psi v_2$

• **A+A**: are we in a position to extract medium temperature?
 – Better control of feed-down contribution & further reduce uncertainties on heavy quark cross section
 – New observables, e.g. J/ψ polarization, Υv_2, etc may shed more lights
 – Precision measurements of individual Υ states at both RHIC and LHC are in the planning.
Backup
And the Feed-down Contribution

$\chi_c \to J/\psi\gamma$
- LHCb, $1.2 < y < 4.0$
- ATLAS, $y < 1.2$
- CDF, $y > 1.2$

$\chi_b(1P)$ feed-down
- $10-30\%$ (vs. p_T)

$\chi_b(2P+3P)$
- $\sim 5\% +1-2\%$

$Y(2S+3S)$
- $8-13\% +1-2\%$

<table>
<thead>
<tr>
<th>J/ψ feed-down</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_c</td>
</tr>
<tr>
<td>$\psi(2S)$</td>
</tr>
<tr>
<td>B-hadron</td>
</tr>
</tbody>
</table>

$Y(1S)$ feed-down

<table>
<thead>
<tr>
<th>$Y(1S)$ from all</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_b(1P)$</td>
</tr>
<tr>
<td>$\chi_b(2P+3P)$</td>
</tr>
<tr>
<td>$Y(2S+3S)$</td>
</tr>
</tbody>
</table>
J/ψ Production vs. Event Activity

- Strong increase of J/ψ production vs. event activity with weak \sqrt{s} dependence
- CGC+ICEM model can reproduce the trend → different intermediate states have different trends

STAR: arXiv:1805.03745

Y-Q Ma, et. al, 1803.11093
J/ψ Polarization

- Very different polarization predictions for different models
- Measurements of better precision are essential
J/ψ Production in pPb at LHC

- A slightly enhancement shows up at backward-\(y\) above 3 GeV/c while strong suppression at forward-\(y\) below 6 GeV/c
- No visible energy dependence. Saturation of CNM?
• Clear trend in different centrality bins
 – Backward-y: suppression to enhancement from peripheral to central collisions
 – Forward-y: stronger suppression at low p_T in central collisions, while $Q_{pPb} \sim 1$ for high p_T in all centrality bins.
ψ(2S) Suppression in 5.02 TeV pPb

- \(R_{pPb} \psi(2S) < R_{pPb} J/\psi \) at high-multiplicity regions (central-y, Pb-going)
- Final-state effects needed to account for the additional suppression
- Co-mover and transport models describe data qualitatively, but not quantitatively
\(\Upsilon(2S+3S) \) are More Suppressed

- Additional 25-35\% suppression for excited states; larger suppression in central collisions
- Final-state effects affect the ground and excited states differently

Mon. 16:50 J. Lopez

\[R_{pPb}^{\Upsilon(nS)/\Upsilon(1S)} \]

\[R_{pPb}^{\Upsilon(2S)/\Upsilon(1S)} \]

\[R_{pPb}^{\Upsilon(3S)/\Upsilon(1S)} \]
LHCb will Contribute

- Clean separation of three \(\Upsilon \) states in pPb and PbP collisions
- Looking forward to precise measurement of CNM effects at large rapidity
A scaling of $J/\psi R_{AA}$ vs. N_{part} is seen at both forward and backward rapidities.
Inclusive $\Upsilon(1S) R_{AA}:$ Forward vs. Mid

- Seems different energy dependence at forward rapidity
- But the uncertainties are relatively large
\[\Upsilon(1S) \, R_{AA} \, vs. \, p_T: \, Data \, vs. \, Model \]

0.2 TeV

\[\Upsilon(1S) \rightarrow \mu^+\mu^-, \, 0-60\%, \, |y|<0.5 \]

STAR Preliminary

\[R_{AA}(0.2 \, \text{TeV}) \]

5.02 TeV

\[\text{ALICE, Pb-Pb} \, (\sqrt{s_{NN}} = 5.02 \, \text{TeV}) \]

Inclusive \(\Upsilon(1S) \rightarrow \mu^+\mu^- \), 2.5 < \(y \) < 4, Cent. 0-90%

• No strong \(p_T \) dependence at both RHIC and LHC
• Models can well reproduce the shape

B. Krouppa, A. Rothkopf, M. Strickland
PRD 97 (2018) 016017
X. Du, M. He, R. Rapp PRC 96 (2017) 054901
ALICE: arXiv:1805.04387
\[\Upsilon(1S) \, R_{AA} \text{ vs. Rapidity at } 5.02 \text{ TeV} \]

- Interplay between dissociation and regeneration changes vs. y
- No strong rapidity dependence at 5.02 TeV PbPb collisions

CMS: CMS-HIN-16-023
ALICE: arXiv:1805.04387