Ultra-peripheral collisions

Aaron Angerami
Lawrence Livermore National Laboratory

Quark Matter 2018
Venice, Italy
Friday May 18, 2018

Ultra-peripheral collisions

- ► In HI collisions the large electromagnetic fields accompanying the nuclei can be expressed in terms of an equivalent photon flux
 - Leads to photon-photon and photon-nucleus collisions
- ► At large impact parameter (*b* > 2 *R*_N) this is the dominant interaction mechanism in HI collisions: "ultra-peripheral collisions"

Ultra-peripheral collisions: scales

- For photons that can be emitted <u>coherently</u> by entire nucleus, flux is enhanced by Z^2
- $k_{\rm T}$, $|q| \lesssim \hbar c/2R_{\rm N} \sim 15$ MeV,
- $k_0, k_z \lesssim \gamma \hbar c/2R_N \sim 80 \text{ GeV } @ \text{ LHC}$

Flux drops rapidly with increasing E (and |q|)

Photons are quasi-real, have ~no transverse momentum and can initiate γA or $\gamma \gamma$ collisions at high √s

A pernicious example: bound-free pair production

- $ightharpoonup \gamma \gamma
 ightharpoonup e^+e^-$ where electron captured by nuclear Coulomb field
- $= \sigma^{BFPP} \sim Z_{1}^{2} Z_{2}^{2} |\psi_{2}(0)|^{2} \sim Z_{1}^{2} Z_{2}^{2} (Z_{2}^{3/2})^{2} \sim Z^{7} \sim 250b @LHC$
- ► In ion colliders results in: ${}^{208}\text{Pb}^{82+} + {}^{208}\text{Pb}^{82+} \longrightarrow {}^{208}\text{Pb}^{82+} + {}^{208}\text{Pb}^{81+} + e^+$
- Well-collimated secondary beam (~ 10's of Watts!) can cause magnet quenches, requires orbit bumps
- ► Huge beam losses results luminosity burn off, short half-life (3 hrs vs 12 hrs for pp)

J. Jowett, Proceedings of IPAC2016

An exotic example: light-by-light scattering

- ► Forbidden by *classical* EM but elementary consequence of *quantum* electrodynamics
 - Had not been directly observed previously
- ATLAS and new CMS preliminary results show
- > 4σ significance for signal
- Fiducial cross sections consistent with SM

See talk by D. d'Enterria, Wed. 18 May.

Photo-production: a reminder

- ► Similar to DIS except photon is quasi-real ($Q^2 = 0$)
 - In *nuclear case*, photons also have small transverse momentum (p_T ≤ 15 MeV)
- To apply pQCD something else must provide hard scale
- Just like in DIS, photon serves as "well-calibrated" probe to study structure of nucleon/ nuclear target
- Measurements have straightforward interpretation and provide direct access nuclear parton densities
- Contrast with hadronic collisions: pp, pA & AA
- Forced to simultaneously understand dynamics of "target" and "probe"

Photo-production: a reminder

- ► Similar to DIS except photon is quasi-real ($Q^2 = 0$)
- In *nuclear case*, photons also have small transverse momentum (p_T ≤ 15 MeV)
- To apply pQCD something else must provide hard scale
- Just like in DIS, photon serves as "well-calibrated" probe to study structure of nucleon/ nuclear target
- Measurements have straightforward interpretation and provide direct access nuclear parton densities
- Contrast with hadronic collisions: pp, pA & AA
- Forced to simultaneously understand dynamics of "target" and "probe"
- Studies of photo-production using UPCs provide an immediate opportunity to study questions addressed by future EIC program
 - Quantifying and hopefully describing nPDF modifications
 - Prevalence of saturated matter at small x with universal features

Calibrating the "probe": exclusive dilepton production

- Another basic QED process
- Cross section measurement can validate EPA approach and evaluation of nuclear photon fluxes
- Exclusive process, clean final state

Calibrating the "probe": exclusive dilepton production

$$\gamma\gamma \to e^+e^-$$

 Backgrounds to other measurements (quarkonia, light-by-light)

Kinematic distributions and overall rates well described by STARlight generator

S.R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, J. Butterworth, Comp. Phys. Comm. 212 (2017) 258.

Calibrating the "probe": critical details

- Photon has significant hadronic component
- Need to understand hadronic/partonic structure of photon or we are stuck in same situation as in hadronic collisions
- Partonic structure influences interpretation of hard processes
- Soft structure leads to nucleon shadowing

$$|\gamma\rangle \equiv \sqrt{Z} |\gamma\rangle_{\text{direct}} + \sum_{\ell=e,\,\mu,\,\tau} \frac{e}{f_{\ell\ell}} |\ell^+\ell^-\rangle + \sum_q \frac{e}{f_{q\bar{q}}} |q\bar{q}\rangle + \dots + \sum_V \frac{e}{f_V} |V\rangle$$

Photo-production: exclusive vector mesons

- Coherent production: Target remains intact
- No forward neutrons
- Colorless exchange couples to entire nucleus
- Restricted to small momentum transfers
- Diffraction pattern determined by <u>nuclear size</u>

- Incoherent production: Target breaks up
- Colorless exchange can couple to single nucleons
- Diffraction pattern determined by <u>nucleon size</u>

Note here "coherent" refers to the target, you can still have photons emitted incoherently by the projectile interact coherently with the target

Exclusive ρ production

Diffraction pattern is determined by nuclear size

STAR: Careful fitting of ρ mass peak including nominal ρ , ω , non-resonant $\pi^+\pi^-$ and their interferences (dashed)

STAR Collaboration Phys.Rev. C96 (2017) no.5, 054904

Exclusive ρ production

$$F(b) \propto rac{1}{2\pi} \int_0^\infty \mathrm{d}p_T \, p_T J_0(bp_T) \sqrt{rac{\mathrm{d}\sigma}{\mathrm{d}t}}$$

STAR Collaboration Phys.Rev. C96 (2017) no.5, 054904

STAR: Careful fitting of ρ mass peak including nominal ρ , ω , non-resonant $\pi^+\pi^-$ and their interferences (dashed)

Exclusive di-pion production

Low mass

High Mass

Medium Mass

b (fm)

Diffraction pattern depends on di-pion mass

Smaller mass di-pion has "larger" size

More likely to be absorbed by target

Less likely to "see" center of nucleus

Nucleon shadowing!

What about quarkonia?

- ▶ J/ψ mass provides hard scale, apply pQCD to problem.
 - Leading contribution requires two gluon exchange
 - Sensitive to target gluon distribution squared
- Multiple (related) theoretical approaches
- pQCD w/ 2 gluon exchange + LT shadowing corrections
- Dipole amplitude from saturation picture
- Light-front holography
- How under control are either of these theoretically?
- NLO corrections, skewness, VM wavefunction
- Open question of if/how this should be used in global NPDF fits

What about quarkonia?

- ► J/ψ mass provides hard scale, apply pQCD to problem.
 - Leading contribution requires two gluon exchange
 - Sensitive to target gluon distribution squared
- Multiple (related) theoretical approaches
- pQCD w/ 2 gluon exchange + LT shadowing corrections
- Dipole amplitude from saturation picture
- Light-front holography
- How under control are either of these theoretically?
- NLO corrections, skewness, VM wavefunction
- Open question of if/how this should be used in global NPDF fits
- ► Both photo- and electro-production of J/ψ are potentially powerful tools that can be used at the EIC. What can we learn from current data to improve their future utility?

Quarkonia: baseline from p+Pb

- ► In p+Pb collisions nucleus is usually photon emitter and the proton is the "target"
 - Photo-production in $p+Pb \Leftrightarrow \gamma p$ collisions

"elastic": proton remains intact

"dissociative": proton destroyed

ALICE results on J/ψ photo-production in p+Pb

See talk by C. Mayer Mon. 14 May

Dissociative increasing more slowly than elastic, consistent with HERA

CMS results on γ photo-production in p+Pb

See talk by R. Chudasama Mon 14 May

Challenging as $\gamma\gamma\rightarrow\mu\mu$ background is large, can't be removed with max p_T cut

Slope of *t* distribution (4.5 GeV⁻²) consistent with HERA

New LHCb results on charmonium in UPC

Excellent momentum resolution, can see detailed structure of t distribution

Cross sections consistent with ALICE where they overlap in rapidity.

Photo-nuclear jet production

- ► Use $\gamma A \rightarrow$ jets + X to study parton distribution in nucleus potentially at small x
- Strikman, Vogt and White Phys.Rev.Lett. 96 (2006) 082001

Domain accessible by **UPC** is

- Spans region where nPDFs go from significant to small
- Has considerable overlap with EIC

ATLAS-CONF-2017-011

Figure adapted from EPPS16 1612.05741 [hep-ph]

Photo-production of jets: direct

Point-like photon

Photon participates directly in hard scattering

Photo-production of jets: resolved

Photo-production of jets: resolved

Photo-nuclear jet production

- Result shows photo-nuclear jet production is experimentally-realizable tool to measure nPDFs
- Will be important to use additional information to separate direct and resolved contributions
- Relationship between jet and gap positions
- Resolved contribution involves photon PDFs

ATLAS-CONF-2017-011

Applications to the QGP: small systems

- Much discussion at this conference about signatures associated with collectivity in small systems
 - Diffractive processes can be used to furnish models of initial conditions in these systems

$$\left. \frac{\mathrm{d} \sigma_{\mathrm{diff}}^{\mathrm{inel}}}{\mathrm{d} t} \right|_{t=0} \propto \langle A^2 \rangle - \langle A \rangle^2$$
 fluctuating "geometry"

- Photons allow for creation of QCD systems of multiple sizes
- Potentially much smaller than in pp collisions
- Especially in "resolved" $\gamma\gamma$ collisions

Applications to the QGP: hard probes

- UPC-like processes have been observed in peripheral AA collisions
- ALICE: excess of low $p_T J/\psi$
- STAR: persistence of p_T dielectron pairs

ALICE Collaboration
Phys. Rev. Lett. 116

- ► Question: can $\gamma\gamma$ in non-UPC collisions processes provide us with probes of the QGP?
 - Important feature: coherent $\gamma\gamma$ systems have very small initial momentum $p_{\mathsf{T}}^{\gamma\gamma} << \Lambda_{\mathsf{QCD}}$
 - Expectation of much better momentum balance than for QCD processes

Product of two photon fluxes in transverse plane for *b*=4 fm using Woods-Saxon charge distribution, $W\gamma\gamma$ =10 GeV, Y=0 Normalized by maximum

Applications to the QGP: hard probes

- Acoplanarity of $\mu\mu$ ($p_T > 4$ GeV) observed to gradually broaden in central collisions
- Not accompanied by broadening of asymmetry distribution that would indicate significant dissociative / incoherent contribution

- Extract transverse momentum scale from Gaussian fits
- $0-10\%:70\pm10 \text{ MeV}$
- Consistent with order of magnitude estimates from kinetic theory for multiple scattering off electric charges in thermal plasma $\langle k_{\rm T}^2 \rangle \propto \alpha_{\rm EM}^2 T^3 L \ln(p_{\rm T}/\alpha_{\rm EM}T)$

What can this tell us about the nature of these scattering centers in the medium?

Summary and outlook

- ► Photons as a tool to probe structure of nuclear matter
- Partonic: nPDF measurements
- "Geometric": diffractive processes
- Processes studied in UPC environment may have applications to the QGP
 - Photons as QCD systems with multiple "sizes"
 - **→** Potentially much smaller than in pp
 - Possible new hard probes
- Compliment similar measurements at <u>future</u> EIC
- EIC program will benefit from experience <u>currently</u> being developed studying UPC phenomena

EXTRAS

Inelastic diffraction and "geometry"

- Cross section for inelastic diffraction proportional to fluctuations in interaction strength
- Magnitude and nature of fluctuations influences shape of t distribution
- not just spacial size, also number, rapidities, etc.

$$\frac{\mathrm{d}\sigma_{\mathrm{diff}}^{\mathrm{inel}}}{\mathrm{d}t}\Big|_{t=0} \propto \langle A^2 \rangle - \langle A \rangle^2$$

- CGC-based approach applied to J/ψ
- Spacial fluctuations important for describing elastic and inelastic *t* distributions at HERA (Mäntysaari & Schenke Phys.Rev.Lett. 117, 052301)
- Applied to UPCs (Phys. Lett. B 772 (2017) 832-838)
- Key component of Glauber-Gribov Color Fluctuations model (GGCF)
- Account for off-shell propagation of projectile by allowing for intermediate states with different interaction strengths ⇒ cross section fluctuations

Exclusive di-leptons: next steps

- Push to %-level accuracy
- Correlate with neutron activity
- Contribution at higher $M_{\mu\mu}$ comes from smaller impact parameters, potentially sensitive to details of nuclear charge distribution and incoherent contribution

Are tails QED radiation? Parton-shower like or real NLO? Contribution from proton dissociation, subset of incoherent in which projectile proton breaks up while emitting photon

Color fluctuations

In multiple scattering at high energies, need to consider offshell propagation of projectile between scatterings in target

This is not included in standard Glauber picture

Glauber-Gribov Color Fluctuation model:

Include these effects by allowing for intermediate states interact with different strengths \Rightarrow "cross section fluctuations"

$$P(\sigma)$$

$$\langle P(\sigma) \rangle = \sigma^{
m inel}$$
 $\operatorname{Var}[P(\sigma)] = \left. \frac{\mathrm{d}\sigma_{
m diff}^{
m inel}}{\mathrm{d}t} \right|_{t=0}$

Color fluctuations of nucleon has been successful in describing centrality dependence of observables in *pA*

Color fluctuations of the photon

Color fluctuations of the photon

Significant impact on total particle production

Mechanisms for constraining $P(\sigma)$ with data

Exclusive ρ production: theoretical description

 ρ has large size/interaction strength Large shadowing correction from GGCF needed

Causes shift in diffraction pattern

Frankfurt, Guzey, Strikman & Zhalov Phys.Lett. B752 (2016) 51-58

Quarkonia: baseline from p+Pb

- ► In p+Pb collisions nucleus is usually photon emitter and the proton is the "target"
 - Photo-production in p+Pb $\Leftrightarrow \gamma p$ collisions
- ► Two cases:
 - (quasi-) "elastic": proton target remains intact
 - "dissociative": proton breaks apart

- Expectation is that dissociative contribution grows more slowly with energy than elastic, e.g. slope determined by "universal" pomeron
- ► Feature present in HERA data

