# **Chirality and Vorticity**

**Experimental perspective from nuclear collisions** 

Zhoudunming Kong Tu 涂周顿明 Rice University Quark Matter 2018





• Birds like **vortices**. <u>Help flying</u>





• Chirality in DNA

Smithsonian.com subscribe smartnews history science innovation arts & culture travel

#### THINK **BIG!**

#### Must the Molecules of Life Always be Left-Handed or Right-Handed?

They are on Earth, but life on other planets could play by different rules



• Birds like **vortices**. <u>Help flying</u>





• Chirality in DNA

Smithsonian.com subscribe smartnews history science innovation arts & culture travel

#### THINK **BIG!**

#### Must the Molecules of Life Always be Left-Handed or Right-Handed?

They are on Earth, but life on other planets could play by different rules



• Birds like **vortices**. <u>Help flying</u>





#### Vorticity and Chirality helps understand nature

# **Heavy ion collisions**



# **Heavy ion collisions**



### **Big questions:**

- Detail properties of emergent QCD system?
- Chiral symmetry restored ?

# **Global** *A* **Polarization**



#### Global A Polarization Nature 548, 62 (2007)





# Global A Polarization Nature 548, 62 (2007)



(See T. Niida's talk)

# Global A Polarization Nature 548, 62 (2007)







Hydrodynamics predicts azimuthal modulation



## Global A Polarization Nature 548, 62 (2017)





# Full energy range p Full picture







- Nontrivial dependence from STAR
- Acceptance could play a role for  $\phi$ ? (See S. Shi's poster)



- Nontrivial dependence from STAR. Species dependence?
- Polarization at LHC energy?

PRL 120, 012302 (2018)



PRL 120, 012302 (2018)



PRL 120, 012302 (2018)



Qualitatively consistent with naïve expectation



But opposite trend with full Hydro calculation

arXiv:1803.00867v1







- e.g., Cu+Au?
- p+A, d+Au collisions?

circular polarization ( $\phi$ -direction) (xz-dependence)

Polarization in small systems?

PRL 120, 012302 (2018)



PRL 120, 012302 (2018)



Large *local* polarization predicted at the LHC energy (See predictions from Becattini's talk) 30

#### Relativistic heavy ion collisions:



#### Relativistic heavy ion collisions:





- Local strong P and CP violation
- Deconfinement, chiral symmetry restoration
- Initial strong magnetic field

#### Relativistic heavy ion collisions:





- Local strong P and CP violation
- Deconfinement, chiral symmetry restoration
- Initial strong magnetic field

Charge separation relative to reaction plane

#### Relativistic heavy ion collisions:





- Local strong P and CP violation
- Deconfinement, chiral symmetry restoration
- Initial strong magnetic field

Charge separation relative to reaction plane

#### Three birds with one stone!

### Where should we look for CME?



### Where should we look for CME?


### **From QM 2017**

PRL 118 (2017) 122301

 $\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle V_{2,c}$ 

10<sup>2</sup>



#### **Background is indeed present. But what is it?**

10<sup>3</sup>

 $N_{trk}^{offline}$ 

10<sup>2</sup>

 $10^{3}$ 

 $N_{\text{tracks}}^{|\eta| < 2.4}$ 

### From QM 2017

PRL 118 (2017) 122301

Int.J.Mod.Phys. E25 (2016) no.01, 1630002



**Background is indeed present. But what is it?** 

 $\gamma \equiv \gamma_{112} = \kappa \cdot \nu_2 \cdot \delta + \gamma_{cme}$ ?  $\langle cos(\phi_{\alpha} + 2\phi_{\beta} - 3\Psi_3) \rangle \equiv \gamma_{123} = \kappa \cdot \nu_3 \cdot \delta$ ?

> Phys.Rev. C97 (2018), 044912 Lect.Notes Phys. 871 (2013) 503-536





**Background scenario** 





Consistent with 100% background at the LHC

Event Shape Engineering  $(v_2)$ 

#### **QM 2017 ALICE**



Glauber: M. Miller et al, ARNPS 57, 205 (2007)

### Event Shape Engineering (v<sub>2</sub>)

(See Z. Tu's talk) PbPb 5.02 TeV CMS l∆nl < 1.6  $\Delta \gamma_{112}^{~~}/\Delta \delta_{112}^{~~}$ ➡ 50-60% ↔ 40-50% Cent. 30-35% Cent. 35-40%  $\langle |B|^2 \cos(2(\Psi_B - \Psi_2)) \rangle$  (a. u.) \* 30-40% ſ → 20-30% ➡ 5-10%  $\Delta \gamma_{112}^{~~/\Delta\delta}$ → 0-5% linear fit 0.5 Cent. 40-45% Cent. 45-50% 0 Δγ<sub>112</sub>/Δδ 0 0.02 Cent. 50-60% Cent. 60-70% 0  $\frac{0.05}{v_2}$   $\frac{0.1}{v_2}$   $\frac{0.1}{v_2}$  $v_2^{0.05}$  0.1  $v_2(|\eta| < 2.4)$ 0.05 0.05 0.15 0 0.15 0

#### **QM 2017 ALICE**



Glauber: M. Miller et al, ARNPS 57, 205 (2007)

### Event Shape Engineering (v<sub>2</sub>)



#### Reach the same conclusion?

### Event Shape Engineering (v<sub>2</sub>)



### How about RHIC energy?



### How about RHIC energy?



Magnetic field last longer at RHIC energy?

### **Test the background @ RHIC**





Background dominated at 200 GeV?

### **Extracting CME signal at RHIC**

- i.e.,  $\Delta \gamma$  correlator vs inv mass (and there are more)
- Same source of background, different technique

### **Extracting CME signal at RHIC**

- i.e.,  $\Delta \gamma$  correlator vs inv mass (and there are more)
- Same source of background, different technique



AuAu 20-50%: CME fraction is small

### **Extracting CME signal at RHIC**





AuAu 20-50%: CME fraction: < 5~20% Consistent with LHC energy

A new correlator, different "shape" to signal and background (See N. Abdelrahman's poster)



A new correlator, different "shape" to signal and background



- Known backgrounds are convex?
  - e.g., flow  $v_2$  + LCC?
- Alternatives are available (Phys. Rev. C 97, 034907 (2018), arXiv:1803.02860)

Au+Au 200 GeV (a) 30-40% AMPT AVED BKG  $R_{\Psi_2}(\Delta S)$ 0.9 ф 1.08 (b) SIG  $a_1^{ch} = 1.0\%$ 1.04 -0.4 -0.2 0.2 0.40  $\Delta S$ 

(See N. Abdelrahman's poster)

A new correlator, different "shape" to signal and background



- Known backgrounds are convex?
  - e.g., flow  $v_2$  + LCC?
- Alternatives are available (Phys. Rev. C 97, 034907 (2018), arXiv:1803.02860)

(See N. Abdelrahman's poster)



Nature knows how to make us happy?

(See N. Abdelrahman's poster)



Harmonic order on 2 but not 3

AA but not small systems (p+Au, d+Au)

(See N. Abdelrahman's poster)



#### **Smiley face:**

Harmonic order AA but not small on 2 but not 3 systems (p+Au, d+Au)

### Where is the background?

If  $a_1 \sim 1\%$  from  $R_{\Psi_2}(\Delta S)$ , incompatible to  $\gamma_{1,n-1,n}$ ?

### **Isobaric collisions**

#### 10% difference expected in magnetic field





### What shall we look at?

### **Isobaric collisions**

### 10% difference expected in magnetic field







### What shall we look at?

### CME

- $\kappa_{2,RuRu} > \kappa_{2,ZrZr}$ ?
- $\kappa_{3,RuRu} \approx \kappa_{3,ZrZr}$  ?
- $R_{\Psi}$  correlator, another smiley face?

# **Isobaric collisions**

### 10% difference expected in magnetic field







 $_{44}Ru^{96} + _{44}Ru^{96}$ 

### What shall we look at?

CME

- $\kappa_{2,RuRu} > \kappa_{2,ZrZr}$ ?
- $\kappa_{3,RuRu} \approx \kappa_{3,ZrZr}$  ?
- $R_{\Psi}$  correlator, another smiley face?

**B-field** 

 Charge-dependent directed flow?
Λ, Λ Polarization?



Phys. Rev. C 89, 054905 (2014)



Phys. Rev. C 89, 054905 (2014)

#### **B-field can separate v<sub>1</sub> with different charge sign**



Phys. Rev. C 89, 054905 (2014)

Phys.Lett. B768 (2017) 260

### B-field can separate $v_1$ with different charge sign

- Heavy quarks probe early time, e.g., charm
- Constrain lifetime of B-field?



Hint of B-field? At both LHC and RHIC energy?

# $\Lambda,\overline{\Lambda}$ Global Polarization

(See T. Niida's Talk)



Nucl. Phys. A 929 (2014) 184



Nucl. Phys. A 929 (2014) 184



Independent observables sensitive to B-field constrains

- CME?
- Polarization?
- Electrical conductivity of the QGP medium?

Nucl. Phys. A 929 (2014) 184



Independent observables sensitive to B-field constrains

- CME?
- Polarization?
- Electrical conductivity of the QGP medium?

Nucl. Phys. A 929 (2014) 184



Independent observables sensitive to B-field constrains

- CME?
- Polarization?
- Electrical conductivity of the QGP medium?

#### @ LHC

- 1. Detector upgrade
- 2. 5 TeV PbPb data





Independent observables sensitive to B-field constrains

- CME?
- Polarization?
- Electrical conductivity of the QGP medium?

#### @ LHC

- 1. Detector upgrade
- 2. 5 TeV PbPb data

Rich insights into B-field in energy and time dependence
### <u>Summary</u>

- From the discovery of Λ, Λ Global Polarization at RHIC, it's just the beginning!
- Can hydrodynamics describe both polarization and v<sub>n</sub>?



- More Global/Local polarization to come:
  - Measurements across a wide range of energy
  - Precise and differential measurements
  - LHC experiments

## <u>Summary</u>

- CME implies rich physics in QCD and QGP :
- Backgrounds are more understood. Similar between RHIC and LHC!
- Unlikely to see a signal @ LHC, upper limits are derived and systematics dominated.
- Methods are gradually converging, but not yet conclusive.

#### **Summary**

- CME implies rich physics in QCD and QGP :
- Backgrounds are more understood. Similar between RHIC and LHC!
- Unlikely to see a signal @ LHC, upper limits are derived and systematics dominated.
- Methods are gradually converging, but not yet conclusive.



## <u>Summary</u>

- CME implies rich physics in QCD and QGP :
- Backgrounds are more understood. Similar between RHIC and LHC!
- Unlikely to see a signal @ LHC, upper limits are derived and systematics dominated.
- Methods are gradually converging, but not yet conclusive.
- New Insights into B-field with independent observables are essential to the search for the CME.
- Isobar has a potential of discovery of CME, but...

Extraordinary discovery requires extraordinary evidence

"... Every genuine test of a theory is an attempt to falsify it, or refute it."

- Karl Popper

# Thank you!