Jet quenching in nuclear collisions: theory overview

Guilherme Milhano (LIP & IST & CERN-TH) gmilhano@lip.pt

QM2018, Venezia, 18 May 2018

:: a jet is **defined** by a set of rules and parameters [a jet algorithm] specifying how to combine constituents and when to stop ::

jet definition [in elementary collisions]

jet definition [in elementary collisions]

:: a jet is **defined** by a set of rules and parameters [a jet algorithm] specifying how to combine constituents and when to stop ::

e.g., generalized k_T family of sequential recombination jet algorithms

- 1. compute all distances d_{ij} and d_{iB}
- 2. find the minimum of the d_{ij} and d_{iB}
- 3. if it is a d_{ii}, recombine i and j into a single new particle and return to 1
- 4. otherwise, if it is a d_{iB} , declare i to be a jet, and remove it from the list of particles. return to 1
- 5. stop when no particles left

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2,$$

$$d_{iB} = p_{ti}^{2p},$$

 $p = 1 :: k_T$ algorithm

- p = 0 :: Cambridge/Aachen algorithm
- p = -1 :: anti-k_T algorithm

jet definition [in elementary collisions]

:: a jet is **defined** by a set of rules and parameters [a jet algorithm] specifying how to combine constituents and when to stop ::

experimentally measurable collimated spray of hadrons

jet definition [in elementary collisions]

:: a jet is defined by a set of rules and parameters [a jet algorithm] specifying how to combine constituents and when to stop ::

experimental jet

experimentally measurable collimated spray of hadrons

jet diversity

 $k_T R=0.4$ jets are **different** from anti- $k_T R=0.4$,

- also, anti- $k_T R = 0.2$ are **not** the inner R=0.2 core of anti- $k_T R = 0.4$ jets, etc.
- algorithm to benefit simultaneously from experimental robustness and direct theoretical interpretation
 - however, C/A reclustering of anti-kt R=0.4 jet is not C/A R=0.4 jet
- jet diversity is a tool rather than a hindrance :: grooming/substructure methods

jets reconstructed with a given algorithm can be reinterpreted [reclustered] with a different

jets in heavy ion collisions

• defined by same jet algorithm[s] as in elementary collisions with essential background subtraction

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 19:31:39 2010 CEST

jet algorithm background subtraction

jets in heavy ion collisions

 defined by same jet algorithm[s] as in elementary collisions with essential background subtraction

:39 2010 CES

what is in a heavy ion jet?

jets in heavy ion collisions

- shower constituents exchange [soft] 4-mom and colour with QGP
- interleaved [vacuum]+[medium induced] emission pattern
- some shower constituents decorrelate from jet :: are lost
- some QGP becomes correlated with jet [medium response] :: it is part of the jet

the importance of vacuum-like parton branching in QGP

- parton branching in vacuum driven by initial mass [p²] and species [quark or gluon], and angular ordered
- scale of first splitting defines jet envelope

large m² :: wide jet :: more constituents

- invented
 - first splitting in QGP always vacuum-like [very short formation time]
 - number of constituents largely determined by vacuum-like physics

small m² :: narrow jet :: fewer constituents

vacuum-like evolution at play, and dominant, within QGP :: jets are modified not re-

wide and narrow jets

- varying number of constituents]

• fixed p_T mother partons give rise to ensemble of varying envelope size jets [with

• with each constituent as an independent energy-loss source, wide jets must lose more energy than narrow jets :: this is what drives increase of dijet asymmetry

Chesler, Rajagopal 1511.07567 Rajagopal, Sadofyev, van der Schee 1602.04187 Brewer, Rajagopal, van der Schee 1710.03237

wide and narrow jets :: jet and hadron R_{AA}

- high p_T hadrons originate from narrow jets which are less suppressed than inclusive jets
- simultaneous description of jet and hadron RAA natural feature of any approach that treats jets as such
- modification of FF is essential
- LHC/RHIC tension substantially less in Hybrid than with quenching weights. why?

modification of vacuum-like dynamics by QGP

- nside
- $\theta_c \bullet$ in-medium DLA cascade as in vacuum but with phase space veto
 - first splitting outside NOT angular ordered, subsequent evolution is
 - effects beyond DLA will fill the vetoed region
 - full description of in-medium cascade requires simultaneous resummation of dynamical processes that are ordered differently [medium-induced radiation ordered in distance travelled] :: a BIG challenge

Caucal, Iancu, Mueller, Soyez 1801.09703

what in a jet interacts with QGP

- for interaction with QGP, a developing jet is a set of resolved structures
- a delicate interplay between an evolving QGP scale and distances within jet

• only structures that are resolvable by the QGP can interact with it independently

what in a jet interacts with QGP

- only structures that are resolvable by the QGP can interact with it independently
- for interaction with QGP, a developing jet is a set of resolved structures
- a delicate interplay between an evolving QGP scale and distances within jet

at present, only MC implementation is that of Hybrid

energy loss of a 2-prong object :: building up a jet

energy loss of total charge with resolved colour singlet dipole

Mehtar-Tani, Tywoniuk 1706.06047

 $t_{\rm d} \sim (\hat{q}\theta_{12})^{-1/3}$

energy loss probability [quenching weight] for 2-prong object is convolution of

scale summary

[p²=m²] the mother parton 'virtuality'

:: determines vacuum-like branching dynamics and, to a large extent the multiplicity of candidate resolvable structures

 $[\Lambda_{med}]$ the evolving QGP scale

[rt] evolving distances between jet constituents :: to be compared locally with medium scale

:: determines what within the jet can be resolved, and thus interacted with independently

medium response

- ... is an unavoidable component of a jet
- implemented very differently in different approaches where it is essential for description of some observables [FF, jet shapes, z_J, ...] JEWEL :: recoil partons free-stream :: hadronized jointly with jet LBT/MARTINI :: recoil partons transported :: hadronized separately CoLBT :: sources further hydro evolution :: hadronized separately Hybrid :: fully thermalized wake :: hadronized separately

links jet quenching to physics of thermalization :: how a QGP converts external perturbations into more QGP

... relative importance is observable dependent

medium response plenty of data available

Chen, Cao, Luo, Pang, Wang 1704.03648

how important is contamination from uncorrelated background?

10³ [10² 10^{1} $\begin{pmatrix} z \\ D \end{pmatrix} O^{\circ}$ 10^{-1} 10⁻² 10⁻³ 1.6 1.2 $\begin{smallmatrix} 1.0 \\ V \\ V \\ 0.8 \\ 0.6 \end{smallmatrix}$ 0.4 0.2 0.0

what does jet interact with?

hydro paradigm

what does jet interact with?

hydro paradigm

however,

jet-[quasi]particle interaction

underlies pQCD based calculations

BDMPS-Z, [D]GLV, AMY, HT, SCET_G *

- and their MC implementations, regardless of sophistication of simulated QGP
 - HIJING, Q-PYTHIA, PYQUEN, CUJET, *JEWEL, MARTINI, LBT, CoLBT, JETSCAPE

phenomenological success claimed in both cases

what does jet interact with?

- success of approaches reliant on interaction with QGP quasiparticles is conceptually challenging
 - extracted from hydro] may provide a solid theoretical underpinning to quasiparticle structure of QGP

• ... and incidentally challenge the hydro paradigm...

finding quasi-particles in QGP

- compare Gaussian distribution of kicks [no quasiparticles] with perturbative tail [quasiparticles]
 - large kicks [Molière scattering] are rare but not exponentially so
- where to look?
 - energy distribution within and around jet [medium response depends on nature of QGP]
- change of acoplanarity distribution [in di-jet, Y/Z-jet, hadron-jet] Gyulassy QM18
 - multiple effects may make it very hard to see [a lesson from the Hybrid model]

modelling

spritz approaches

- all included mechanisms are concurrent
- dynamical decision on what happens when

* Q-PYTHIA, JEWEL, Hybrid, and [by construction] analytical calculations

prosecco bitter soda ice garnish approaches

- sequential deployment of included mechanisms [shower then transport, etc.]
- requires matching scales [added uncertainty?]
 - * MARTINI, LBT, CoLBT, JETSCAPE [in principle allows for concurrency]
- can it be justified? do different mechanism factorize?

- underlying in-QGP jet modification
- successful data description leads to diverse conclusions in different models
- need to justify observable lack of sensitivity to missing ingredients for robust conclusion

no presently available model or calculation includes all known and potentially relevant mechanism

better observables extracting QGP properties with jets is all about understanding the specific sensitivity of observables

 observe different modification of light and hea jets

$$z_g = \frac{\min(p_{\perp,1},p_{\perp,2})}{p_{\perp,1}+p_{\perp,2}} \qquad z_g > 0.1$$

observe different modification of light and heavy-quark jets via substructure of heavy-quark tagged

a very interesting idea...

another interesting idea probe time-dependence of QGP properties

antenna...

- inject time delayed [top decay + W decay + qqbar coherence] probes in QGP
 - reconstructed W mass will be quenched but less so the longer the delay
- requires large luminosity, but within reach at LHC with lighter ion runs

and one more jet quenching as fake suppressant to study $H \rightarrow b$ bbar

- b-jets from Higgs decay not quenched [$\tau_{Higgs} \sim 47$ fm/c] but other b-jets are
 - signal cleaner than in pp
- requires huge luminosity
- conceptually open a path for jet quenching as a tool for [B]SM processes [searches]

Berger, Gao, Jueid, Zhang 1804.06858

$PbPb \rightarrow ZH \rightarrow \ell^+ \ell^- bb$

outlook

- - no QGP in small systems?
 - very small effect :: need dedicated observables
- significantly over the last few years
 - increased meaningfulness of theory/data comparisons
 - however, 'all-dynamics' approach still not available
- via lighter ion runs

jet modification is the QGP hallmark that has not been observed in smaller systems

analytical understanding and MC implementation of in-QGP jet dynamics advanced

access to rare processes [eg, top quark production] and configurations [eg, very asymmetric dijets], and increased precision in key observables [eg, Z-jet] within reach

