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jet definition. [In.elementary colliSIONS] ...

.. ajet iIdefined by a set of rules and parameters [a jet algorithm] specifying how to combine constituents and when to

e.d., generalized kfamily of sequential recombination jet algorithms

2
1. compute all distances djj and d g dij = mln(pm ,pt ) R , ARfj =(yi! )+ (! 9;)°,

2. bnd the minimum of the dj and d i dis = pil

3. ifitis a djj, recombine i and j into a single
new particle and returnto 1

4. otherwise, ifitis a d g, declare i to be a p=1 : kralgorithm

Jet,tc'_ilr:d remtove Itt frfm the list of p =0 :: Cambridge/Aachen algorithm
particles. return to

. p = -1 :: anti-k ralgorithm
5. stop when no particles left
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L theoretically calculable
experimentally measurable fragmentation of energetic parton
collimated spray of hadrons



jet. definition [In elementary collisions ..

.. ajet iIsdefined by a set of rules and parameters [a jet algorithm] specifying how to combine constituents and when to

theory jet

experimental jet

e theoretically calculable
experimentally measurable fragmentation of energetic parton
collimated spray of hadrons

ajetisajetisajetis ajet



|et. diversit

e krR=0.4 jets are different from anti-kt R=0.4,
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* also, anti-kt R=0.2 are not the inner R=0.2 core of anti-k 1 R=0.4 jets, etc.

* |ets reconstructed with a given algorithm can be reinterpreted [ reclustered | with a different

algorithm to benebt simultaneously from experimental robustness and direct theoretical
Interpretation

e however, C/A reclustering of anti-kt R=0.4 jet is not C/A R=0.4 et

* Jetdiversity Is a tool rather than a hindrance :: grooming/substructure methods



|ets.In.heavy lon collisions

e dePned by same jet algorithm|s] as in elementary collisions with essential
background subtraction

jet algorithm

C}\}\S' ”MSEpe‘ l'lLHC.CERN
2 | +

2 S e / background subtraction

Jel 0, pl 205 1 GeV

Jel 1, pl. 70.0 GeV




|ets.In.heavy lon collisions

e dePned by same jet algorithm|s] as in elementary collisions with essential
background subtraction

jet algorithm

A< - | CMS Experimenl al LHC, CERN
C‘\’1§/, Dala rosordod: Sun Nov 14 19:34:30 2010 CEST +
< | Rur/Event: 151076 / 1328520
; ‘r—-’ Lumi sc-u:uon. 249 b k d bt t.
Jel 0, pl 205 1 GeV
0 GeV

what has to be calculated?

what Is In a heavy Ion jet?



|ets.In.heavy lon collisions

* shower constituents exchange [soft] 4-mom and
colour with QGP

* Interleaved [vacuum]+[medium induced] emission
pattern

* some shower constituents decorrelate from jet :: are
lost

* some QGP becomes correlated with jet [medium
response] :: it is part of the jet

Zapp :: QM17 A

correlated
background

background

Zapp :: QM17



e parton branching in vacuum driven by Initial mass [p 24] and species [quark or
gluon], and angular ordered

e scale of pbrst splitting dePnes jet envelope

<

large M :: wide jet :: more constituents small M :: narrow jet :: fewer constituents

* vacuum-like evolution at play, and dominant, within QGP :: jets are modiPed not re-
Invented

o Prst splitting iIn QGP always vacuum-like [very short formation time]

e number of constituents largely determined by vacuume-like physics



e pxed pt mother partons give rise to ensemble of varying envelope size jets [with
varying number of constituents]

* with each constituent as an independent energy-loss source, wide jets must lose
more energy than narrow jets :: this Is what drives increase of dijet asymmetry
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* high pthadrons originate from narrow jets which are less suppressed than inclusive jets
* simultaneous description of jet and hadron R aa natural feature of any approach that treats jets as such
* modibcation of FF Is essential
o

LHC/RHIC tension substantially less in Hybrid than with quenching weights. why?

AndrZs, Armesto, Luzum, Salgado, Zurita 1606.04837



Caucal, lancu, Mueller, Soyez 1801.09703
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* In-medium DLA cascade as in vacuum but with phase space veto

* Pprst splitting outside NOT angular ordered, subsequent evolution Is
* effects beyond DLA will Pll the vetoed region

* full description of in-medium cascade requires simultaneous resummation of dynamical processes that are ordered
differently [medium-induced radiation ordered in distance travelled] :: a BIG challenge



Casalderrey, Mehtar-Tani, Salgado, Tywoniuk 1210.7765

e only structures that are resolvable by the QGP can interact with it independently
* for interaction with QGP, a developing jet Is a set of resolved structures

* a delicate interplay between an evolving QGP scale and distances within jet
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Casalderrey, Mehtar-Tani, Salgado, Tywoniuk 1210.7765

e only structures that are resolvable by the QGP can interact with it independently
* for interaction with QGP, a developing jet Is a set of resolved structures

* a delicate interplay between an evolving QGP scale and distances within jet
at present, only MC implementation Is that of Hybrid



* energy loss probability [qguenching weight] for 2-prong object is convolution of
energy loss of total charge with resolved colour singlet dipole



SCA C SUMM A Y oo

[p 2=m 2] the mother parton OvirtualityO

.. determines vacuum-like branching dynamics and, to a large extent the multiplicity of
candidate resolvable structures

[ meda] the evolving QGP scale

.. determines what within the jet can be resolved, and thus interacted with independently

Ir 1] evolving distances between jet constituents

.. to be compared locally with medium scale



MCAIUM LSO S o

I Is an unavoidable component of a jet
* Implemented very differently in different approaches where it Is essential for
description of some observables [FF, jet shapes, z 3 E]}
JEWEL :: recoll partons free-stream :: hadronized jointly with jet
LBT/MARTINI :: recoll partons transported :: hadronized separately
CoLBT :: sources further hydro evolution :: hadronized separately

Hybrid :: fully thermalized wake :: hadronized separately

* |inks jet quenching to physics of thermalization :: how a QGP converts external
perturbations into more QGP

| relative Importance is observable dependent



- pp reference

CMS
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hydro paradigm ——— QGP is a strongly coupled fluld — >  no gquasiparticles

~




what does |et Interact with?

hydro paradigm ——— QGP is a strongly coupled fluld — >  no gquasiparticles

however, /

phenomenological success claimed in both cases



what does jet Interact with?

® success of approaches reliant on interaction with QGP guasiparticles Is
conceptually challenging

e account of v coefbcients In kinetic theory [which implies a larger ! /s than that
extracted from hydro] may provide a solid theoretical underpinning to
guasiparticle structure of QGP . | . | .

] T T T Tealbydro
0.4 __Single hit [/ Full transport . __
: 7 03
0.2 —
Kurkela, Wiedemann, Wu 1803.02072 0.1
, " 1805.04081 - Viscous hydro #/s=0. 8 ]
0 | | | | .
0 9 4 p
Transverse size:! =R/ 1mfp

e E and incidentally challenge the hydro paradigmE
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A QGP brick
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0 "234
* compare Gaussian distribution of kicks [no quasiparticles] with perturbative tail [quasiparticles]

e |arge kicks [Moliere scattering] are rare but not exponentially so
* where to look?

e energy distribution within and around jet [medium response depends on nature of QGP]
* change of acoplanarity distribution [in di-jet, "/Z-jet, hadron-jet] .., ows

* multiple effects may make it very hard to see [a lesson from the Hybrid model]

Casalderrey, Gulhan, Milhano, Pablos, Rajagopal 1609.05842






robust conclusions. from agreement with da
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Milhano, Wiedemann, Zapp 1707.04142

e no presently available model or calculation includes all known and potentially relevant mechanism
underlying in-QGP jet modiPcation

* successful data description leads to diverse conclusions in different models

* need to justify observable lack of sensitivity to missing ingredients for robust conclusion



better observables

extracting QGP properties with jets Is all about understanding the specific sensitivity of observables
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* observe different modibcation of light and heavy-quark jets via substructure of heavy-quark tagged
jets

a very interesting idea!



another INLeresStNG I a
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* |nject time delayed [top decay + W decay + qgbar coherence] probes in QGP

NAN LSO LTSKHOL

* reconstructed W mass will be quenched but less so the longer the delay

* requires large luminosity, but within reach at LHC with lighter ion runs



and one more

jet quenching as fake suppressant to study$Hb bbar ETOEn G0, Juelf, £hang T0A052
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* Db-jets from Higgs decay not quenched [ #uiggs ~ 47 fm/c] but other b-jets are

* signal cleaner than in pp
®* requires huge luminosity

* conceptually open a path for jet quenching as a tool for [B]SM processes [searches]



outlook

* jet modibcation is the QGP hallmark that has not been observed in smaller systems
e no QGP in small systems?

o very small effect :: need dedicated observables

* analytical understanding and MC implementation of in-QGP jet dynamics advanced
signibcantly over the last few years

e |ncreased meaningfulness of theory/data comparisons

e however, Oall-dynamicsO approach still not available

® access to rare processes [eq, top quark production] and conbgurations [eg, very
asymmetric dijets], and increased precision in key observables [eq, Z-jet] within reach
via lighter ion runs



