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Plan of the talk

• An historical remark on the paper with Nicola Cabibbo quark

liberation. I have no time to speak also on the complex Langevin

equation.

• Some selected topics in off-equilibrium Hamiltonian statistical

mechanics. I will concentrate on slow approach to equilibrium.

– Many body localization: an intriguing quantum phenomenon.

– Energy cascade: what happens if the energy is concentrated on

low frequency modes? How does it diffuse from low frequency

modes to high frequency modes? Two examples: the

Fermi-Pasta-Ulam model and turbulence.

– Glassy physics: a corrugated landscape.



Quark liberation: Cabibbo Parisi

Two phenomenological models for confinement:

• Flux lines (dual Meisner effect): deconfinement as restoration of the

dual gauge symmetry.

• MIT bag model: percolation of bags.

High temperature: free Fermi gas.



Which is the value of Tc? TH = Tc ≈ mπ in Cabibbo Parisi!

Which is the value of the Hagedorn temperature? Ericson and Rafelski.

The smoothed mass spectrum of hadronic states as a function of mass.

Experimental data: long-dashed green line with the 1411 states known

in 1967; short-dashed red line with the 4627 states of 1996. The solid

blue line represents the exponential fit yielding TH=158 MeV.



An exponential mass spectrum arises from states that cannot be

described by simple two or three quarks bound states. It arises from the

excitations of the bag or of the flux tube : i.e multiple states with the

same quantum numbers.

Different threshold: pseudoscalar, vector mesons, strangeness, nucleons

contribute to an effective exponential spectrum with the correct value

of the temperature!



Number of quantum states ≈ classical phase space

Two quarks with an linear increasing potential: |x1 − x2| < λE:

the density of states is proportional to E3

Three quarks with an linear increasing potential: |x1 − x2| < λE,

|x1 − x3| < λE:

the density of states is proportional to E6.

Two quarks with a logarithmic potential:

an exponentially increasing density of states.

Z =
∫

d3x exp(−βλ ln(x))

diverges for

βλ ≤ 2



After the collision of two nuclei thermal equilibrium is reached in a short

time.

Why do we believe all systems do reach thermal equilibrium?

Wrong answer: our teacher told us so.

We have a Hamiltonian with 2N degrees of freedom.

H = H0 + gH1

If H0 has N integrals of motion and H1 is bounded, what happens at

g �= 0? (two examples: a slightly anharmonic system or the solar

system). What happens to the integrals of motion?

Thermalization and non-trivial integrals of motion are not compatible.



H = H0 + gH1

Poincaré theorem The energy is the only integral of motion that is an

analytic function of g.

Perturbation theory is non-convergent: its convergence is ruined by the

presence of small denominators.

Naively we expect a microcanonical ensemble at large times.



A newly discovered quantum phenomenon:

Many body localization:

There is no quantum equivalent of the Poincaré theorem.

In some cases one can construct integrals of motion:

small denominators are present but they are not so nasty as in classical

theory.

The microcanonical ensemble does not hold.

The worst new:

for large systems, there are local integrals of motion (LIOM) that

depends essentially on the behavior of the system near an arbitrary

point.

No thermal equilibrium, no Boltzmann statistics: the memory of the

initial conditions in a point lasts for an infinite time.



Back to the classic world! KAM theory: a very brief summary.

If we have an Hamiltonian with 2N degrees of freedom

H = H0 + gH1

If H0 has N integrals of motion and H1 is bounded, for small g often the

system behaves like an integral system.

There are values of g where this does not happen. Both kinds of g’s

have a non-zero measure.

Integrability is most likely at small g and it disappears completely at a g

of order 1 (i.e. g > g∗).

For these values of g the time evolution does not bring the system to the

microcanonical ensamble: the large time limit is not described by the

standard statistical mechanics.



Fermi Pasta Ulam models: One dimensional model
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Fermi Pasta Ulam discovered that the system does not go to equilibrium

in the region of not too large g. They started from an energy that is

concentrated in the low-frequency modes.

Multiple collisions of low-frequency waves (phonons) should produce

high-frequency waves.

Later it has been realized that

HFPU = H∗ +O(g2)

where H∗ is integrable and this partially explains the absence of

approach to equilibrium.



A modified model
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In the continuum limit

∂2φ

∂t2
=

∂2φ

∂x2
−m2φ− gφ3

What happens if the energy is concentrated on the low-frequency

modes?

Multiple collisions of low-frequency waves (phonons) should produce

high-frequency waves.

It is important to consider a momentum (k) dependent energy E(k).

E(k) = |Π̃(k)|2 Π̃(k) =
∑

k exp(ipj)Πj

At equilibrium 〈ΠiΠj〉 = 0 hence E(k) = const: ultraviolet catastrophe



E(k) = |Π̃(k)|2 Π̃(k) =
∑

j exp(ikj)Πj

At equilibrium 〈ΠiΠj〉 = 0 hence E(k) = const: ultraviolet catastrophe.

For small g and times not to large than 109 natural units:

E(k) ∝ exp(−β(t)|k|): an effective quantum behaviour.

Also if φ(x, t) is analytic for complex x at t = 0, at later times φ(x, t)

develops poles. If the nearest poles are at

Im x = b(t)

we get

E(k) ∝ exp(−2b(t)|k|)



KAM theory and the infinite volume limit

We know that for most of the g < g∗ we do not reach equilibrium.

How g∗ depends on the volume?

One can argue that in the infinite volume limit g∗ → 0 for a random

starting configuration.

At g = 0 in the infinite volume limit at large times φ(x, t) as a Gaussian

distribution.

For small g, gφ4 may be arbitrarily large so that gφ4 may be arbitrarily

large.

The characteristic time increases very fast when g becomes small.



3-D turbulence

The velocity field vµ(x, t) is divergence free (incompressible fluid)
∑
µ

∂µvµ = 0

.

Passive matter ρ(x, t) is transported by the velocity: it satisfies the

continuity equation.

ρ̇ =
∑
µ

∂µ (vµ ρ)

The zero viscosity equation are the limit η → 0 of Navier-Stokes

equations

v̇ν =
∑
µ

∂µ (vµ vν)− η∆vν + ∂νp

p(x, t) is a function that enforces the zero divergence condition.



Energy is formally conserved when η → 0 (zero viscosity).

E =
∫
dx

∑
µ v

2
µ

We can define E(k). E(k) ∝ exp(−2b(t)|k|) and b(t) = 0 for t > t∗

For t > t∗

E(k) ∝ |k|−ζ

with ζ ≈ 5
3
(Kolmogorov theory)





The ultraviolet catastrophe is present in 3D turbulence.

At a time of order 10, the energy starts to be transferred from low k to

infinite k.

At a later time the energy content of low modes decays quite fast

(exponentially?).



Glassy dynamics

When cooling a system, some very slow degrees of freedom may go out

of equilibrium.

The interesting case is when this degree of freedom correspond to

changes in a large space region (of size ξ).

Many different local minima of the free energy. The minima differ one

from the other on a region of size ξ. The barriers for going from one

minimum to the others are of order exp(∆(ξ)), ∆(ξ) being an increasing

function of ξ. Slow dynamics is dominated by tunnelling.

In glasses one measure times to approach equilibrium that are very high
(1018 the natural scale).



Glassy dynamics

• Two very different speeds of approach to equilibrium

– Inside a minimum: faster

– Hopping from one minimum to an other: slower.

• Two different temperatures:

– Inside a minimum: lower

– Hopping from one minimum to an other: higher.

• When one changes external conditions, the system remains in the

same free energy minimum up to the point where it becomes

unstable.

You move at the bottom of a deep canyon and you do not jump to

the nearby canyon. Canyons may merge, biforcate or disappear into

a jump.



Conclusions

• There are mechanisms that may induce a slow, very slow, infinitely

slow approach to equilibrium.

• The situation may strongly depend on the initial conditions (small

momenta or large momenta are out of equilibrium)

• It would be interesting to understand if some of them may at action

in the case of quark matter.

• How to parametrize phenomenologically incomplete thermalization

in order to put constraints on this effect and eventually to measure

it?


