# **Performance of Elliptic Flow Studies at NICA/MPD**

## Nikolay Geraksiev for the MPD Collaboration



VBLHEP, Joint Institute for Nuclear Research, Dubna, Russia FPET, Plovdiv University "Paisii Hilendarski", Plovdiv, Bulgaria Email: nikolay.geraksiev@gmail.com



Anisotropic flow presents a unique insight into heavy ion collision physics. The presented poster reveals the prospects of studying elliptic flow at the NICA/MPD facility through the UrQMD model. Presented are results on elliptic flow for simulated and reconstructed hadrons at the planned NICA energy range.





### **Motivation for NICA/MPD**

\* Study Hot and Dense Barionic Matter \* Region of Highest Net Barion Density \* Equation of State, Phase Transition \* Multiplicity, Ratios, Critical phenomena, HBT, EM probes, **Collective Flow**, etc...

\* pp, pA, AA, AB \* polarized beams \* HIC physics \* Med & Industry



b.fm



### **Multi-Purpose Detector**

\* 1<sup>st</sup> stage: **TPC**, **TOF**, ECAL, **FHCal**, FFD \* Requirements:

- up to  $7 \cdot 10^3$  ev/s with mult. up to 1400
- large acceptance
- low material budget
- precise tracking and identification

### **Data Set, Simulation & Analysis**

- \* Event Generator:
- UrQMD 3.4 (non-hydro), Au<sup>79+</sup>Au<sup>79+</sup>,  $v_{NN}$ =11 GeV, 8..12 fm, 500k events







#### \* Realistic MPD Simulation

- Geant4 transport,
- Realistic **TPC** Cluster Simulation and Response
- FHCal Energy Deposition by channels
- \* Analysis
- Track selection  $TPC_{hits} > 30$ ,  $|\eta| < 1.5$ ,  $p_{\tau} < 2.0 \text{ GeV/}c$
- Realistic Particle Identification by **TPC** and **TOF** - Realistic Λ Reconstruction - Realistic Elliptic flow



## **Particle Identification**



### **Differential Elliptic Flow**



#### Momentum, GeV/c

### p (GeV/c)



### **Conclusion:**

Elliptic flow studies may provide a better understanding of the initial fireball conditions. To assess NICA/MPD capabilities in this regard simulated events were reconstructed and several hadrons were analyzed. Even though the data set is limited, the results are promising merit further investigation. and