Abstract

The suppression of high p_T single inclusive hadron and dihadron productions in high-energy heavy-ion collisions at RHIC and the LHC is studied within a next-to-leading order pQCD parton model. The jet quenching effect is included via the medium-modified fragmentation functions based on the higher-twist energy loss formalism. The evolution of the bulk medium is simulated by a (2+1)-dimensional viscous hydrodynamic model. The jet transport coefficient q_0 is quantitatively extracted for $A+A$ collisions at both RHIC and the LHC energies by comparing with experimental data. Our results show that q_0 extracted from dihadron suppression is consistent with single hadron suppression. We also predict dihadron I_{AA} for central and non-central Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

NLO pQCD parton model and modified fragmentation functions

ΔR_{AA} and I_{AA} are extracted with different q_0 for central Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV as compared to ALICE and CMS data.

The prediction of dihadron I_{AA} for Pb+Pb collisions in the centrality of 50 - 60% with q_0 extracted from central Pb+Pb collisions.

Extract \hat{q}_0 at the LHC ($\sqrt{s_{NN}} = 2.76$ TeV)

We also extract \hat{q}_0 from central Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. Then we still use them to calculate the R_{AA} and I_{AA} for non-central collisions.

Central Pb+Pb collision

ΔR_{AA} and I_{AA} are extracted with different q_0 for central Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV as compared to CMS data.

Global fit χ^2 as a function of \hat{q}_0.

Prediction for dihadron I_{AA} at $\sqrt{s_{NN}} = 5.02$ TeV

Finally we predict the dihadron I_{AA} for central and non-central Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. As for the single hadron R_{AA}, we compare them not only with the experimental data of $\sqrt{s_{NN}} = 2.76$ TeV but also with the data of $\sqrt{s_{NN}} = 5.02$ TeV, because those three data sets are very close to each other.

Central Pb+Pb collisions

ΔR_{AA} and I_{AA} in the 50 - 60 % centrality with q_0 extracted from central Pb+Pb collisions as compared to experimental data.