Modeling of jet quenching in heavy ion collisions

Korinna Zapp

LIP (Lisbon) & CERN

Quark Matter Student Day 13.05.2018
Outline

Jet definition
 Jet finding algorithms
 Background

Jet production
 Factorisation
 Nuclear PDFs

Jet sub-structure
 Resumming collinear logarithms
 Colour coherence & angular ordering
 Jet sub-structure variables & grooming

Jet quenching
 Key experimental results
 Theoretical considerations
 Medium response
Outline

Jet definition
 Jet finding algorithms
 Background

Jet production
 Factorisation
 Nuclear PDFs

Jet sub-structure
 Resumming collinear logarithms
 Colour coherence & angular ordering
 Jet sub-structure variables & grooming

Jet quenching
 Key experimental results
 Theoretical considerations
 Medium response
What is a jet?

A jet is

- a **collimated** spray of hadrons.
- result of fragmentation of an **energetic quark or gluon**.
Jet algorithms

- A jet is defined by the algorithm and its parameters used to reconstruct jets.
- Jets are proxies for a hard partons and NOT equivalent to hard partons.
- Two classes of jet finding algorithms:
 - Cone algorithms
 - Sequential recombination algorithms
- Jet algorithms should be *infra-red and collinear safe*, i.e. result must not change when
 - Adding a soft particle
 - Splitting a particle into two collinear ones
Sequential recombination algorithms: the k_\perp class

The distance measure

$$d_{ij} = \min \left(p_{\perp,i}^{2p}, p_{\perp,j}^{2p} \right) \frac{\Delta R^2}{R^2} \quad \text{and} \quad d_{iB} = p_{\perp,i}^{2p}$$

- $p = 1$: k_\perp algorithm

- $p = 0$: Cambridge/Aachen algorithm
 - Dokshitzer, Leder, Moretti, Webber, JHEP 9708 (1997) 001

- $p = -1$: anti-k_\perp algorithm
 - Cacciari, Salam, Soyez, JHEP 0804 (2008) 063

The algorithm

1. compute minimum of all d_{ij} and d_{iB}
2. if minimum is a d_{iB}, declare object i to be a jet and remove it
 else combine object i and j
3. repeat from point 1 until no objects left
Background

- background gets clustered into jets
- ideal situation: flat background – can be subtracted
Background

- Background gets clustered into jets
- Ideal situation: flat background – can be subtracted
- More realistic: fluctuating background – can be subtracted on average, have to unfold
Background

- background gets clustered into jets
- ideal situation: flat background – can be subtracted
- more realistic: fluctuating background – can be subtracted on average, have to unfold
- modulated background
 - can be subtracted
 - shape has to be known
Background

- background gets clustered into jets
- ideal situation: flat background — can be subtracted
- more realistic: fluctuating background — can be subtracted on average, have to unfold
- modulated background
 - can be subtracted
 - shape has to be known
- fluctuating modulated background: subtract & unfold
Subtracting background

Two strategies:
- cluster jets and subtract observable-by-observable
- subtract background on entire event, then cluster jets

Example for observable subtraction: Area subtraction

\[p_{\perp}^{(\text{corr})} = p_{\perp}^{(\text{meas})} - \rho A_J \]

- \(A_J \): jet area
 - distribute very soft 'ghost particles' with known density in event
 - cluster jets
 - number of ghosts in jet gives jet area
- \(\rho \): average background \(p_{\perp} \) density
 - estimate \(\rho \) outside hard jets
 - have to find unbiased estimator

Subtracting background

Example for event subtraction: SoftKiller

- divide event into tiles
- introduce p_\perp cut such that half of the tiles are empty
- $p^{(\text{cut})}_\perp = \text{median}_{i \in \text{tiles}} \left\{ p^{(\text{max})}_\perp, i \right\}$

Outline

Jet definition
- Jet finding algorithms
- Background

Jet production
- Factorisation
- Nuclear PDFs

Jet sub-structure
- Resumming collinear logarithms
- Colour coherence & angular ordering
- Jet sub-structure variables & grooming

Jet quenching
- Key experimental results
- Theoretical considerations
- Medium response
Factorisation of jet production cross section

- energetic quarks and gluons are produced in hard scattering processes
- factorisation of the cross section:

\[\sigma(P_1, P_2) = \sum_{i,j} \int_0^1 dx_1 \, dx_2 \, f_i(x_1, Q^2) f_j(x_2, Q^2) \hat{\sigma}_{ij}(x_1 P_1, x_2 P_2, \alpha_s, Q^2) \]

- \(\hat{\sigma}_{ij} \): partonic cross section
 - has perturbative expansion in \(\alpha_s \)
 - known: NNLO for di-jets, NLO for up to \(\sim 5 \) jets
 - short distance physics: insensitive to nature of incoming hadrons
 i.e. no nuclear modifications

- \(f_i(x, Q^2) \): parton distribution function
 - nuclear pdf fits available
Nuclear PDFs: EPPS16

▶ bound proton PDF defined as

\[f_i^{p/A}(x, Q^2) = R_i^A(x, Q^2)f_i^p(x, Q^2) \]

▶ bound neutron PDF from isospin symmetry

▶ \(Q^2 \) dependence: DGLAP with 2-loop splitting functions

▶ parametrise \(R_i^A \) and fit for chosen free proton PDF (in this case CT14NLO)
Nuclear PDFs: nCTEQ15

- Nuclear PDF defined as

\[f_i^{(A,Z)}(x, Q^2) = \frac{Z}{A} f_i^{p/A}(x, Q^2) + \frac{A-Z}{A} f_i^{n/A}(x, Q^2) \]

- Bound neutron PDF from isospin symmetry
- \(Q^2 \) dependence: DGLAP evolution
- Parametrise and fit bound proton PDF \(f_i^{p/A} \)
- NLO PDF
Nuclear PDFs

\[
R^{Pb}_{W}(x, Q^2 = 10 \text{ GeV}^2)
\]

Nuclear PDFs

Outline

Jet definition
 Jet finding algorithms
 Background
Jet production
 Factorisation
 Nuclear PDFs
Jet sub-structure
 Resumming collinear logarithms
 Colour coherence & angular ordering
 Jet sub-structure variables & grooming
Jet quenching
 Key experimental results
 Theoretical considerations
 Medium response
jets have characteristic sub-structure dictated by QCD radiation

in collinear limit QCD cross sections factorise:

\[d\sigma_{n+1} \approx d\sigma_n \frac{dQ^2}{Q^2} \frac{d\phi}{2\pi} \frac{dz}{2\pi} \frac{\alpha_s}{P_{ba}(z)} \]

Altarelli-Parisi splitting functions:

\[
\begin{align*}
 P_{qq} &= C_F \frac{1 + z^2}{1 - z} \\
 P_{gq} &= C_F \frac{1 + (1 - z)^2}{z} \\
 P_{gg} &= C_A \frac{(1 - z(1 - z))^2}{z(1 - z)} \\
 P_{qg} &= T_R \left(z^2 + (1 - z)^2 \right)
\end{align*}
\]
Collinear logarithms

- naive “radiation probability”

\[
\Pi_1 \equiv \frac{\sigma_{n+1}}{\sigma_n} = \int_{Q_0^2}^{Q_{\text{max}}^2} \frac{dQ^2}{Q^2} \int_{z_{\text{min}}}^{1} dz \frac{\alpha_s}{2\pi} P_{ba}(z) \approx \frac{\alpha_s}{2\pi} \ln^2 \left(\frac{Q_{\text{max}}^2}{Q_0^2} \right)
\]

- \(\Pi_1 > 1\) for sufficiently hard processes \(\rightarrow \Pi_1\) is not a probability

- have to resum

 can be done analytically and explicitly in Monte Carlo event generators

- straightforward iteration:

\[
\Pi_n \approx \frac{1}{n!} \frac{\alpha_s^n}{(2\pi)^n} \ln^{2n} \left(\frac{Q_{\text{max}}^2}{Q_0^2} \right)
\]
The Sudakov form factor

- no-emission probability: Sudakov form factor

\[\Delta(Q_{\text{max}}^2, Q^2) = \exp \left(- \int_{Q^2}^{Q_{\text{max}}^2} \frac{dQ^2}{Q^2} \int_{z_{\text{min}}}^{1} dz \frac{\alpha_s}{2\pi} P_{ba}(z) \right) = \exp \left(- \int_{Q^2}^{Q_{\text{max}}^2} dQ^2 P_{\text{em}}(Q^2) \right) \]

- basis for Monte Carlo implementation
- parton showers resum collinear logs to leading log accuracy with some sub-leading terms
Resumming collinear logarithms

Initial state evolution

- **Jet definition**
- **Jet production**
- **Jet sub-structure**
- **Jet quenching**

Resumming collinear logarithms

Initial state evolution

- **in principle initial state evolution the same as in final state**
- **but: both ends of evolution fixed**
- **must account for probability to resolve parton at larger $x = zx'$**

\[
P_{\text{em}}^{(\text{is})}(x, Q^2) = \frac{1}{Q^2} \int dz \frac{\alpha_s}{2\pi} P_{ba}(z) \frac{x' f_a(x', Q^2)}{xf_b(x, Q^2)}
\]

- **hard to implement in forward evolution**
 - have to reach flavour and t_{max} set by hard process
- **evolve backwards from hard process towards incoming hadron**

Modeling jet quenching

Korinna Zapp
Multiple emissions

- splitting probability depends only on starting scale
- splitting process can be iterated
- leading contribution from strongly ordered histories
 \[Q_1^2 \gg Q_2^2 \gg Q_3^2 \gg Q_4^2 \text{ and } Q_2^2 \gg Q_2'^2 \]

- evolution variable: to leading log accuracy
 \[\frac{dQ^2}{Q^2} = \frac{dk^2}{k^2} = \frac{d\theta^2}{\theta^2} \]
Aside: p_\perp balance in boson-jet processes

- $x_{j\gamma} \neq 1$ in $p+p$ mainly due to initial state radiation
- final state recoils against initial state emissions
- rest comes from jet \neq parton

CMS, arXiv:1711.09738
Resumming collinear logarithms

Quasi-collinear limit

- gluon radiation off massive quark
- for k_\perp, $m_q \ll E_q$:

$$P_{gQ}(z, \theta) \approx \frac{C_F}{1 - z} \left(1 + z^2 - \frac{2z}{1 + z^2(\theta E_q/m_q)^2}\right)$$

- emission suppressed for $\theta \lesssim m_q/E_q$

\rightarrow "dead cone"

Soft limit

- soft limit also universal
- soft gluons come from everywhere in the event
⇒ quantum interference – independent evolution picture still valid?
Angular ordering

- outside cone soft gluons sum coherently
- don’t resolve two partons, but see only combined charge
- angular ordering

 automatically incorporated when using θ as evolution variable

- analogue of Chudakov effect in QED

 suppression of soft bremsstrahlung from e^+e^- pairs

- “colour coherence”
Interference between initial and final state

- Initial conditions for showers set by colour structure of hard process
- ISR+FSR add coherently in regions of colour flow and destructively else
- Emission from each parton confined to cone extending to its colour partner
Experimental observation of colour coherence

rapidity of third hardest jet in jet events

HERWIG: full colour coherence
ISAJET: no CC
PYTHIA: no CC
PYTHIA+: partial CC
modern generators: full CC
Jet sub-structure observables

- observables built from jet constituents
 - particles, partons, calorimeter cells, ...

- characterise distribution of momentum & find structures inside jet

- various grooming techniques studied in p+p to separate hard structure from soft contaminations
 - filtering, trimming, pruning, ...

- interesting for heavy ions, but requires careful studies

Image from David Krohn
Grooming

- aim: remove contamination from background
- exploit knowledge about perturbative QCD radiation
 - small angle
 - symmetric
 - hard
- background is typically soft & large angle
- filtering: re-cluster jet with smaller radius R_{filt} and keep n_{filt} hardest (sub-)jets
- trimming: re-cluster jet with smaller radius R_{trim} and keep (sub-)jets with $p_{\perp} > \epsilon_{\text{trim}} p_{\perp}^{(\text{jet})}$
 - Krohn, Thaler, Wang, JHEP 1002 (2010) 084
- pruning: re-cluster jet with k_{\perp} or C/A algorithm, in each clustering step discard softer sub-jet if $\Delta R > R_{\text{prun}}$ and $\frac{\min(p_{\perp,1}, p_{\perp,2})}{p_{\perp,1} + p_{\perp,2}} < z_{\text{prun}}$
An example: SoftDrop

Soft Drop/modified Mass Drop Tagger algorithm:

1. cluster jet with anti-\(k_{\perp}\)
2. re-cluster with Cambridge/Aachen
3. undo last clustering step, compute \(z_g = \frac{\min(p_{\perp,1}, p_{\perp,2})}{p_{\perp,1} + p_{\perp,2}}\) and \(\Delta R_{12}\)
4. if \(z_g > z_{\text{cut}}(\Delta R_{12}/R)^\beta\) stop
 else reject softer prong and go back to 3

- identifies hardest 2-prong structure in jet
- calculation:
 \[
p(z_g) = \frac{P(z_g) + P(1 - z_g)}{\int_{z_{\text{cut}}}^{1/2} dz \, P(z) + P(1 - z)} \Theta(z_g - z_{\text{cut}})
 \]
Outline

Jet definition
 Jet finding algorithms
 Background

Jet production
 Factorisation
 Nuclear PDFs

Jet sub-structure
 Resumming collinear logarithms
 Colour coherence & angular ordering
 Jet sub-structure variables & grooming

Jet quenching
 Key experimental results
 Theoretical considerations
 Medium response
Suppression of single-inclusive jets

- **ATLAS** Preliminary
 - anti-k_T, $R = 0.4$ jets, $\sqrt{s_{NN}} = 5.02$ TeV

2015 Pb+Pb data, 0.49 nb$^{-1}$
2015 pp data, 25 pb$^{-1}$

- **suppression** of jets by factor 2 relative to expectation from $p+p$

need to scale $p+p$ reference by number of hard $N+N$ collisions

Modeling jet quenching

Korinna Zapp
Di-jet momentum asymmetry

\[A_J = \frac{p_{T_1} - p_{T_2}}{p_{T_1} + p_{T_2}} \]

- enhancement of asymmetric configurations

Intra-jet energy distribution: Jet profile

- suppression of activity at intermediate r
- increase near the edge of the jet

Intra-jet energy distribution: fragmentation function

\[z = \frac{p_{\perp,h}}{p_{\perp,J}} \cos(\Delta R_{hJ}) \]

- distribution of hadrons inside jets
- suppression at intermediate & enhancement of soft momenta

Groomed shared momentum fraction

\[z_g = \frac{\min(p_{\perp,1}, p_{\perp,2})}{p_{\perp,1} + p_{\perp,2}} \rightarrow p_{\perp} \text{ sharing between two hardest prongs} \]

- suppression of symmetric configurations
- and/or enhancement of very asymmetric ones

CMS-HIN-16-006

Korinna Zapp
Summary of experimental results

- jet production suppressed by factor ~ 2 up to p_{\perp}'s of 1 TeV
- hard structures inside jets survive largely unmodified
- enhancement of soft activity at edges of jet
- and far away from jet

![Diagram showing jet substructure and quenching effects](image-url)
Jet quenching warm-up
Jet quenching warm-up

- jets produced in earliest phase of heavy ion collision
- “calibrated” probe: well understood in p+p
- jet production in heavy ion collisions unmodified (short distance process) except for nuclear effects in pdf’s
- jet quenching allows to observe process of equilibration
 soft observables see result of equilibration
- jets give access to scale dependence of medium properties

Modeling jet quenching

Korinna Zapp
What happens to jets in medium?

Scenario I: hard partons don’t resolve quasi-particles
- interactions between jet & medium at large coupling
- AdS/CFT techniques

Scenario II: hard partons do resolve quasi-particles
- jet – medium interactions at weak(ish) coupling
- perturbative techniques
- thermalisation through elastic re-scattering (slow)
- parton energy loss through QCD bremsstrahlung
- destructive interference in multiple scattering

LPM effect

relevant scale: momentum transfer q between hard parton and medium
How long does it take to radiate a gluon?

\[k^\mu = (\omega, \vec{k}_\perp, k_\parallel) \]
\[p^\mu = (E, 0, 0, p_\parallel) \]
\[= (k^\mu + p'^\mu) \]
\[p'^\mu = (E', \vec{p}'_\perp, p'_\parallel) \]

- virtual state: \(p^2 = E^2 - p^2 \neq 0 \rightarrow m^2_{\text{virt}} = p^2 \)
- uncertainty principle: \(1 = \Delta t \Delta E = \Delta t \ m_{\text{virt}} \)
- gluon formation time: \(t_{\text{form}} = \Delta t \times (\text{boost factor}) \)
\[
 t_{\text{form}} = \frac{1}{m_{\text{virt}}} \frac{E}{m_{\text{virt}}} = \frac{E}{2p_\mu k^\mu} \simeq \frac{E}{\omega E \theta^2} \simeq \frac{\omega}{k^2_\perp}
\]
- time for entire jet evolution: \(\mathcal{O}((1 - 10) \text{ fm}) \)
- (transverse) size of medium: \(\mathcal{O}((1 - 10) \text{ fm}) \)

Modeling jet quenching

Korinna Zapp
Bremsstrahlung in medium: heuristic discussion

Brownian motion of the gluon: $\langle k^2 \rangle = \hat{q}L$
formation time of the radiated gluon:

$$t_f \sim \frac{\omega}{k^2} \sim \frac{\omega}{\hat{q} t_f} \quad \Rightarrow \quad t_f = \sqrt{\frac{\omega}{\hat{q}}}$$
and
$$N_{coh} = \frac{t_f}{\lambda}$$

 gluon energy spectrum:

$$\frac{d^2 I^{coh}}{d\omega dy} \sim \frac{1}{N_{coh}} \frac{d^2 I^{incoh}}{d\omega dy} \propto \frac{\alpha_s}{\omega \lambda} \sqrt{\hat{q}} \omega^{-3/2}$$

radiative energy loss:

$$\Delta E = \int_0^L dy \int_0^{\omega_c} d\omega \omega \frac{d^2 I}{d\omega dy} \propto \alpha_s \hat{q} L^2$$
Colour coherence and re-scattering

- consider colour singlet dipole in medium
- in vacuum colour coherence leads to angular ordering of radiation
- re-scattering in medium introduces new scale: q_{\perp}
- medium modifications depend on whether dipole is resolved

- in particular: unresolved structures remain unperturbed

Medium response

- medium response: medium’s reaction to energy & momentum deposited by jet
- gives rise to additional soft activity
- momentum conservation → additional particles follow jet direction
- correlated background

- correlated background cannot and should not be subtracted
- should be regarded as part of jet
- have to understand what background subtraction procedures do
- fluctuations matter
Medium response

- medium response: medium’s reaction to energy & momentum deposited by jet
- gives rise to additional soft activity
- momentum conservation → additional particles follow jet direction
- correlated background

- correlated background cannot and should not be subtracted
- should be regarded as part of jet
- have to understand what background subtraction procedures do
- fluctuations matter
Medium response

- medium response: medium’s reaction to energy & momentum deposited by jet
- gives rise to additional soft activity
- momentum conservation → additional particles follow jet direction
- correlated background

- correlated background cannot and should not be subtracted
- should be regarded as part of jet
- have to understand what background subtraction procedures do
- fluctuations matter
Particle distribution outside jets

- **CMS** Particle yield vs. Δr
 - pp 27.4 pb$^{-1}$ (5.02 TeV)
 - PbPb 404 μb$^{-1}$ (5.02 TeV)
 - $p_T>120$ GeV, $|\eta_{jet}|<1.6$

- **Enhancement of soft particles far away from jet**

- Modeling jet quenching

Korinna Zapp
Theoretical ideas

- treat medium response in hydro: energy and momentum deposited by jet constitute source term

\[\partial_\mu T^{\mu\nu}_{\text{bulk}} = J^\nu \quad \text{with} \quad J^\nu = -\partial_\mu T^{\mu\nu}_{\text{hard}} \]

- solve hydro exactly with source term

Tachibana, Chang, Qin, Phys. Rev. C 95 (2017) no.4, 044909

- assume source term to be small perturbation and do linear response

Casalderrey-Solana, Gulhan, Milhano, Pablos, Rajagopal, JHEP 1703 (2017) 135

- trace recoiling thermal partons in transport code

Gao, Ma, Qin, Zhang, Phys. Rev. C 97 (2018) no.4, 044903

- free streaming of recoiling thermal partons

Kunnawalkam Elayavalli, Zapp, JHEP 1707 (2017) 141