

Hydro and flow in nuclear (A+A) collisions

Jiangyong Jia

Stony Brook University & Brookhaven National Laboratory

- Space-time dynamics and hydro
- Flow observables and how to measure them
- Flow fluctuations from event to event
- Flow fluctuations within the same event
- Roads toward precision.

Brookhaven National Laboratory

May 13, 2018, Venice, Italy

Office of Science | U.S. Department of Energy

Space-time dynamics

t~10fm/c =10⁻²² s

Credit: Bjoern Schenke

2

Space-time dynamics

Use hydro to unfold the space-time dynamics

Basics of hydrodynamics: ideal

Energy-momentum conservation	Charge conservation
$\partial_{\mu}T^{\mu\nu} = 0$	$\partial_{\mu}N^{\mu} = 0$

System always in local equilibrium: ideal hydrodynamics

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$
$$N^{\mu} = nu^{\mu}$$

Six unknown: ϵ , P, u^{μ} , and n, only five equations-of-motion

Closed by the equation-of-state (EOS) :* $\epsilon = \epsilon(P)$

* zero chemical potential

Hydro-response controlled by QCD EoS.

Basics of hydrodynamics: viscous

Energy-momentum conservation Charge conservation
$$\partial_{\mu}T^{\mu
u} = 0$$
 $\partial_{\mu}N^{\mu} = 0$

Include near-equilibrium corrections: viscous hydrodynamics

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P + \prod)\Delta^{\mu\nu} + \pi^{\mu\nu}$$

Bulk pressure Shear tensor
 $N^{\mu} = nu^{\mu} + n^{\mu}$
Charge diffusion

Basics of hydrodynamics: 1st order

Energy-momentum conservation
$$Charge conservation$$
 $\partial_{\mu}T^{\mu
u} = 0$ $\partial_{\mu}N^{\mu} = 0$

Include near-equilibrium corrections: viscous hydrodynamics

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P + \prod)\Delta^{\mu\nu} + \pi^{\mu\nu}$$

Bulk pressure Shear tensor N^µ = $nu^{\mu} + n^{\mu}$
Charge diffusion

Include 1st-order gradient expansion:

 $\Pi = -\zeta \nabla_{\lambda}^{\perp} u^{\lambda}$

 $\pi^{\mu\nu} = -\eta \sigma^{\mu\nu}$ **n**: shear viscosity coefficient

Basics of hydrodynamics: 2nd order

Energy-momentum conservation
$$Charge conservation$$

 $\partial_{\mu}T^{\mu
u} = 0$ $\partial_{\mu}N^{\mu} = 0$

Include near-equilibrium corrections: viscous hydrodynamics

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P + \prod)\Delta^{\mu\nu} + \pi^{\mu\nu}$$

Bulk pressure Shear tensor
$$N^{\mu} = nu^{\mu} + n^{\mu}$$

Charge diffusion

Include up to 2nd-order gradient expansion

$$\begin{aligned} \pi^{\mu\nu} &= -\eta \sigma^{\mu\nu} + \eta \tau_{\pi} \left[{}^{<}D\sigma^{\mu\nu>} + \frac{\nabla_{\lambda}^{\perp}u^{\lambda}}{3} \sigma^{\mu\nu} \right] + \kappa \left[R^{<\mu\nu>} - 2u_{\lambda}u_{\rho}R^{\lambda<\mu\nu>\rho} \right] + \lambda_{1}\sigma^{<\mu}_{\ \lambda}\sigma^{\nu>\lambda} \\ &+ \lambda_{2}\sigma^{<\mu}_{\ \lambda}\Omega^{\nu>\lambda} + \lambda_{3}\Omega^{<\mu}_{\ \lambda}\Omega^{\nu>\lambda} + \kappa^{*}2u_{\lambda}u_{\rho}R^{\lambda<\mu\nu>\rho} + \eta \tau_{\pi}^{*} \frac{\nabla_{\lambda}^{\perp}u^{\lambda}}{3} \sigma^{\mu\nu} + \bar{\lambda}_{4}\nabla_{\perp}^{<\mu}\ln\epsilon\nabla_{\perp}^{\nu>}\ln\epsilon \\ \Pi &= -\zeta \left(\nabla_{\lambda}^{\perp}u^{\lambda} \right) + \zeta \tau_{\Pi}D \left(\nabla_{\lambda}^{\perp}u^{\lambda} \right) + \xi_{1}\sigma^{\mu\nu}\sigma_{\mu\nu} + \xi_{2} \left(\nabla_{\lambda}^{\perp}u^{\lambda} \right)^{2} \\ &+ \xi_{3}\Omega^{\mu\nu}\Omega_{\mu\nu} + \bar{\xi}_{4}\nabla_{\mu}^{\perp}\ln\epsilon\nabla_{\mu}^{\mu}\ln\epsilon + \xi_{5}R + \xi_{6}u^{\lambda}u^{\rho}R_{\lambda\rho} \,. \end{aligned}$$

Many transport coeff. \rightarrow probe microscopic theory, QCD

Hydro to decipher the QGP properties?

	Gauge/Gravity	Kinetic (BGK)	pQCD	Lattice QCD
$\epsilon(P)$	3 P	Eq. (3.30)	3 P	Eq. (3.125)
η	$rac{\epsilon+P}{4\pi T}$	$rac{(\epsilon + P) au_R}{5}$	$rac{3.85(\epsilon{+}P)}{g^4\ln(2.765g^{-1})T}$	$0.10(6)rac{\epsilon+P}{T}$
$ au_{\pi}$	$\frac{2-\ln 2}{2\pi T}$	$ au_R$	$\frac{5.9\eta}{\epsilon+P}$	
λ_1	$\frac{\eta}{2\pi T}$	$rac{5}{7}\eta au_R$	$rac{5.2\eta^2}{\epsilon+P}$	
λ_2	$2\eta au_{\pi}-4\lambda_{1}$	$-2\eta au_R$	$-2\eta au_{\pi}$	
λ_3	0	0	$rac{30(\epsilon+P)}{8\pi^2T^2}$	
κ	$rac{\epsilon+P}{4\pi^2T^2}$	0	$rac{5(\epsilon+P)}{8\pi^2T^2}$	$0.36(15)T^2$
Refs.	[19, 28, 29]	[28, 119, 120]	[121 – 123]	[124–127]
	[128, 129]		[130]	[131, 132]

Table 2.1:Compilation of leading-order results for transport coefficients in
various calculational approaches, see text for details.table from 1712.05815

ab.initio calc. for QGP not easy, relies on model/data comparison

Connecting the initial and final state

- What is the nature of the initial state fluctuation ?
- What is the space-time evolution of the produced matter ?
 - How are $(\varepsilon_n, \Phi_n^*)$ transferred to (v_n, Φ_n) event-by-event?
- What are the properties of the produced matter ?

Hydrodynamic behavior in each event

 v_n sensitive to initial perturbation and viscosity.

- Bigger initial fluctuation lead to bigger v_n
- Small viscosity ensure efficient transfer of initial fluctuation to final state flow.

Curtsey of L.Pang and X.N Wang, EbyE 3D hydro+AMPT condition

Fluctuation from event to event

Curtsey of L.Pang and X.N Wang, EbyE 3D hydro+AMPT condition

Fluctuation from event to event

Curtsey of L.Pang and X.N Wang, EbyE 3D hydro+AMPT condition

Fluctuation from event to event

Curtsey of L.Pang and X.N Wang, EbyE 3D hydro+AMPT condition

Fluctuation within a single event $\frac{dN}{d\phi} \propto 1 + 2\sum_{n} \mathbf{v}_{n}(p_{T},\eta,...) \cos n \left(\phi - \Phi_{n}(p_{T},\eta,...)\right)$

Single particle distribution

 $\frac{dN}{d\phi d\eta dp_{_T}}$

Two-particle correlation function

$$\left\langle \frac{dN_1}{d\phi d\eta dp_T} \frac{dN_2}{d\phi d\eta dp_T} \right\rangle$$

$$\left\langle \frac{dN_1}{d\phi d\eta dp_T} .. \frac{dN_m}{d\phi d\eta dp_T} \right\rangle$$

Two-particle correlation function

$$\left\langle \frac{dN_1}{d\phi d\eta dp_T} \frac{dN_2}{d\phi d\eta dp_T} \right\rangle$$

$$\left\langle \frac{dN_1}{d\phi d\eta dp_T} .. \frac{dN_m}{d\phi d\eta dp_T} \right\rangle$$

Two-particle correlation function

$$\left\langle \frac{dN_1}{d\phi d\eta dp_T} \frac{dN_2}{d\phi d\eta dp_T} \right\rangle \implies \left\langle V_n(p_{T1}, \eta_1) V_n^*(p_{T2}, \eta_2) \right\rangle \quad v_n \text{ from 2PC}$$

Two-particle correlation function

$$\left\langle \frac{dN_1}{d\phi d\eta dp_T} \frac{dN_2}{d\phi d\eta dp_T} \right\rangle \implies \left\langle V_n(p_{T1}, \eta_1) V_n^*(p_{T2}, \eta_2) \right\rangle \quad v_n \text{ from 2PC}$$

How to measure flow? $V_n = v_n e^{in\Phi_n}$

By particle correlations!

Determine flow vector in one subevent:

Noise uncorrelated between two subevents, average over events:

$$\boldsymbol{q}_{n} = \frac{\sum_{i} e^{in\phi_{i}}}{\sum_{i}} = v_{n}e^{in\Phi_{n}} + \boldsymbol{\delta}_{\boldsymbol{\kappa}}$$

$$\left\langle \boldsymbol{q}_{n}^{a}\boldsymbol{q}_{n}^{b^{*}}\right\rangle = \left\langle (\boldsymbol{v}_{n}^{a}\boldsymbol{e}^{i\boldsymbol{n}\Phi_{n}^{a}} + \boldsymbol{\delta}^{a})(\boldsymbol{v}_{n}^{b}\boldsymbol{e}^{-i\boldsymbol{n}\Phi_{n}^{b}} + \boldsymbol{\delta}^{b^{*}})\right\rangle = \left\langle \boldsymbol{V}_{n}^{a}\boldsymbol{V}_{n}^{b^{*}}\right\rangle$$

Statistical noise

How to measure flow? $V_n = v_n e^{in\Phi_n}$

20

We often assume $p(v_n)$ independent of p_T and η , i.e. ignoring intra-event fluctuation $p(V_n) = f(p_T, \eta) p(\overline{v}_n)$

$$\left\langle V_n^a V_n^{b^*} \right\rangle = f(p_T^a, \eta^a) f(p_T^b, \eta^b) \left\langle v_n^2 \right\rangle$$

How to measure flow? $V_n = v_n e^{in\Phi_n}$

We often assume $p(v_n)$ independent of p_T and η , i.e. ignoring intra-event fluctuation $p(V_n) = f(p_T, \eta) p(\overline{v}_n)$

$$\left\langle V_n^a V_n^{b^*} \right\rangle = f(p_T^a, \eta^a) f(p_T^b, \eta^b) \left\langle v_n^2 \right\rangle$$

Event-plane or scalar-product methods, e.g. measure flow in subevent **c** wrt symmetric subevents **a**&**b**: $f(p_{\pi}^{a}, \eta^{a}) = f(p_{\pi}^{b}, \eta^{b})$

$$v_n^{meas} = \frac{\left\langle \boldsymbol{q}_n^c \boldsymbol{q}_n^{a^*} \right\rangle}{\sqrt{\left\langle \boldsymbol{q}_n^a \boldsymbol{q}_n^{b^*} \right\rangle}} = \frac{f(\boldsymbol{p}_T^c, \boldsymbol{\eta}^c) f(\boldsymbol{p}_T^a, \boldsymbol{\eta}^a) \left\langle \overline{v}_n^2 \right\rangle}{\sqrt{f(\boldsymbol{p}_T^a, \boldsymbol{\eta}^a) f(\boldsymbol{p}_T^b, \boldsymbol{\eta}^b)} \left\langle \overline{v}_n^2 \right\rangle}} = f(\boldsymbol{p}_T^c, \boldsymbol{\eta}^c) \sqrt{\left\langle \overline{v}_n^2 \right\rangle}} = \sqrt{\left\langle v_n^c v_n^c \right\rangle}$$

Lessons: 1) We often report RMS value of v_n , 2) relies on factorization assumption!

How to measure EbyE flow fluctuations?

Multi-particle correlations -> moments, cumulants

 $C_{2} = \langle \delta X^{2} \rangle \qquad \delta X = X - \langle X \rangle$ $C_{3} = \langle \delta X^{3} \rangle \qquad \delta X = X - \langle X \rangle$ $C_{4} = \langle \delta X^{4} \rangle - 3 \langle \delta X^{2} \rangle^{2}$ $C_{5} = \langle \delta X^{5} \rangle - 10 \langle \delta X^{3} \rangle \langle \delta X^{2} \rangle$

Quantifies the shape of p(x)

C₂ variance, C₃ Skewness, C₄ Kurtosis

22

How to measure EbyE flow fluctuations?

Multi-particle correlations -> moments, cumulants

$$C_{2} = \langle \delta X^{2} \rangle \qquad \delta X = X - \langle X \rangle$$
$$C_{3} = \langle \delta X^{3} \rangle \qquad \delta X = X - \langle X \rangle$$

 $C_5 = \left< \delta X^5 \right> - 10 \left< \delta X^3 \right> \left< \delta X^2 \right>$

 $C_4 = \langle \delta X^4 \rangle - 3 \langle \delta X^2 \rangle^2$

Quantifies the shape of p(x)

C₂ variance, C₃ Skewness, C₄ Kurtosis

Replace with harmonics $X=v_n e^{in\Phi_n} \rightarrow cumulants$ for 2D functions Simplification by symmetry $\rightarrow < X >= 0, < X^n >= 0, < XX^* >= < v_n^2 > ...$

How to measure EbyE flow fluctuations?

Multi-particle correlations -> moments, cumulants

$$C_{2} = \langle \delta X^{2} \rangle \qquad \delta X = X - \langle X \rangle$$
$$C_{3} = \langle \delta X^{3} \rangle \qquad \delta X = X - \langle X \rangle$$

$$C_{4} = \langle \delta X^{4} \rangle - 3 \langle \delta X^{2} \rangle^{2}$$
$$C_{5} = \langle \delta X^{5} \rangle - 10 \langle \delta X^{3} \rangle \langle \delta X^{2} \rangle$$

Quantifies the shape of p(x)

C₂ variance, C₃ Skewness, C₄ Kurtosis

Replace with harmonics $X=v_n e^{in\Phi_n} \rightarrow cumulants$ for 2D functions Simplification by symmetry $\rightarrow < X >= 0, < XX^* >= < v_n^2 > ...$

Cumulant for a single flow harmonic:

N.Borghini, P.Dinh, J.Ollitrault nucl-th/0007063

$$c_{n}\{4\} = \langle\!\langle e^{in(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4})}\rangle\!\rangle - \langle\!\langle e^{in(\phi_{1}-\phi_{3})}\rangle\!\rangle \langle\!\langle e^{in(\phi_{2}-\phi_{4})}\rangle\!\rangle - \langle\!\langle e^{in(\phi_{1}-\phi_{2})}\rangle\!\rangle - \langle\langle e^{in(\phi_{1}-\phi_{2})}\rangle\rangle - \langle\langle e^{in($$

Probe the shape of $p(v_n)$, e.g. non-Gaussianity

How to measure flow fluctuations?

Four-particle symmetric cumulants:

A.Bilandzic, C.Christensen, K.Gulbrandsen, A.Hansen, Y.Zhou 1312.3572

$$sc_{n,m} \{4\} = \langle\!\!\langle e^{in(\phi_1 - \phi_2) + m(\phi_3 - \phi_4)} \rangle\!\!\rangle - \langle\!\!\langle e^{in(\phi_1 - \phi_2)} \rangle\!\!\rangle \langle\!\!\langle e^{im(\phi_3 - \phi_4)} \rangle\!\!\rangle - \langle\!\!\langle e^{i(n\phi_1 + m\phi_3)} \rangle\!\!\rangle \langle\!\!\langle e^{i(n\phi_2 + m\phi_4)} \rangle\!\!\rangle - \langle\!\!\langle e^{i(n\phi_1 - m\phi_4)} \rangle\!\!\rangle \langle\!\!\langle e^{i(-n\phi_2 + m\phi_3)} \rangle\!\!\rangle = \langle\!\!\langle e^{in(\phi_1 - \phi_2) + m(\phi_3 - \phi_4)} \rangle\!\!\rangle - \langle\!\!\langle e^{in(\phi_1 - \phi_2)} \rangle\!\!\rangle \langle\!\!\langle e^{im(\phi_3 - \phi_4)} \rangle\!\!\rangle = \langle\!\!\langle v_n^2 v_m^2 \rangle\!\rangle - \langle\!\!\langle v_n^2 \rangle\!\langle v_m^2 \rangle\!\rangle + \text{non-flow}$$

How to measure flow fluctuations?

Four-particle symmetric cumulants:

A.Bilandzic, C.Christensen, K.Gulbrandsen, A.Hansen, Y.Zhou 1312.3572

$$sc_{n,m} \{4\} = \langle\!\langle e^{in(\phi_1 - \phi_2) + m(\phi_3 - \phi_4)} \rangle\!\rangle - \langle\!\langle e^{in(\phi_1 - \phi_2)} \rangle\!\rangle \langle\!\langle e^{im(\phi_3 - \phi_4)} \rangle\!\rangle - \langle\!\langle e^{i(n\phi_1 + m\phi_3)} \rangle\!\rangle \langle\!\langle e^{i(n\phi_2 + m\phi_4)} \rangle\!\rangle - \langle\!\langle e^{i(n\phi_1 - m\phi_4)} \rangle\!\rangle \langle\!\langle e^{i(-n\phi_2 + m\phi_3)} \rangle\!\rangle = \langle\!\langle e^{in(\phi_1 - \phi_2) + m(\phi_3 - \phi_4)} \rangle\!\rangle - \langle\!\langle e^{in(\phi_1 - \phi_2)} \rangle\!\rangle \langle\!\langle e^{im(\phi_3 - \phi_4)} \rangle\!\rangle = \langle\!\langle v_n^2 v_m^2 \rangle\!\rangle - \langle\!\langle v_n^2 \rangle \langle\!\langle v_m^2 \rangle\!\rangle + \text{non-flow}$$

Three-particle asymmetric cumulants (event-plane correlators):

$$\operatorname{ac}_{n,m} \{3\} = \langle\!\!\langle \operatorname{e}^{\operatorname{i}(n\phi_1 + m\phi_2 - (n+m)\phi_3)} \rangle\!\!\rangle - \operatorname{terms involving} \langle\!\!\langle \operatorname{e}^{\operatorname{i} n\phi} \rangle\!\!\rangle, \langle\!\!\langle \operatorname{e}^{\operatorname{i} m\phi} \rangle\!\!\rangle, \langle\!\!\langle \operatorname{e}^{\operatorname{i} (n+m)\phi} \rangle\!\!\rangle$$

$$= \langle\!\!\langle \operatorname{e}^{\operatorname{i}(n\phi_1 + m\phi_2 - (n+m)\phi_3)} \rangle\!\!\rangle$$

$$= \langle\!\langle v_n v_m v_{n+m} \cos(n\Phi_n + m\Phi_m - (n+m)\Phi_{n+m})\rangle + \operatorname{non-flow}$$

Probe the shape of $p(v_n, v_m)$ and $p(\Phi_n, \Phi_m)$

How to measure flow fluctuations?

Four-particle symmetric cumulants:

A.Bilandzic, C.Christensen, K.Gulbrandsen, A.Hansen, Y.Zhou 1312.3572

$$sc_{n,m} \{4\} = \langle\!\langle e^{in(\phi_1 - \phi_2) + m(\phi_3 - \phi_4)} \rangle\!\rangle - \langle\!\langle e^{in(\phi_1 - \phi_2)} \rangle\!\rangle \langle\!\langle e^{im(\phi_3 - \phi_4)} \rangle\!\rangle - \langle\!\langle e^{i(n\phi_1 + m\phi_3)} \rangle\!\rangle \langle\!\langle e^{i(n\phi_2 + m\phi_4)} \rangle\!\rangle - \langle\!\langle e^{i(n\phi_1 - m\phi_4)} \rangle\!\rangle \langle\!\langle e^{i(-n\phi_2 + m\phi_3)} \rangle\!\rangle = \langle\!\langle e^{in(\phi_1 - \phi_2) + m(\phi_3 - \phi_4)} \rangle\!\rangle - \langle\!\langle e^{in(\phi_1 - \phi_2)} \rangle\!\rangle \langle\!\langle e^{im(\phi_3 - \phi_4)} \rangle\!\rangle = \langle\!\langle v_n^2 v_m^2 \rangle\!\rangle - \langle\!\langle v_n^2 \rangle \langle\!\langle v_m^2 \rangle\!\rangle + \text{non-flow}$$

Three-particle asymmetric cumulants (event-plane correlators):

$$\operatorname{ac}_{n,m} \{3\} = \langle\!\!\langle \operatorname{e}^{\operatorname{i}(n\phi_1 + m\phi_2 - (n+m)\phi_3)} \rangle\!\!\rangle - \operatorname{terms involving} \langle\!\!\langle \operatorname{e}^{\operatorname{i} n\phi} \rangle\!\!\rangle, \langle\!\!\langle \operatorname{e}^{\operatorname{i} m\phi} \rangle\!\!\rangle, \langle\!\!\langle \operatorname{e}^{\operatorname{i} (n+m)\phi} \rangle\!\!\rangle$$

$$= \langle\!\!\langle \operatorname{e}^{\operatorname{i}(n\phi_1 + m\phi_2 - (n+m)\phi_3)} \rangle\!\!\rangle$$

$$= \langle\!\langle v_n v_m v_{n+m} \cos(n\Phi_n + m\Phi_m - (n+m)\Phi_{n+m})\rangle + \operatorname{non-flow}$$

Probe the shape of $p(v_n, v_m)$ and $p(\Phi_n, \Phi_m)$

Generalize to more particles, e.g. $\langle \cos 12(\Phi_2 - \Phi_4) \rangle$ is 9-particle correlator

Data/hydro comparison: two-particle correlation²⁸

Data/hydro comparison: EbyE flow fluctuations²⁹

 $p(v_2, v_3), p(v_2, v_4)$

Data/hydro comparison: EbyE flow fluctuations³⁰

Over-constrain current hydrodynamic models

Maximizing the constraining power

Maximizing the constraining power

• Ollitrault saw v_n angle and amplitude fluctuates in p_T in EbyE hydro

$$\tilde{r}_{n}(p_{T1}, p_{T2}) := \frac{\langle v_{n}(p_{T1})v_{n}(p_{T2})\cos[n(\Psi_{n}(p_{T1}) - \Psi_{n}(p_{T2}))]\rangle}{\langle v_{n}(p_{T1})v_{n}(p_{T2})\rangle} \qquad \text{QM2012}$$

- Breaking is largest for v₂ in ultra-central Pb+Pb collisions
 - Also depends strongly on PID

U.Heinz, Z.Qiu, C.Shen 1302.3535

33

37

Flow fluctuation in longitudinal direction

Fluctuation of sources in two nuclei \rightarrow fluctuation of transverse-shape

$$oldsymbol{v}_n$$
 = $v_n e^{in\Psi_n}$

Consequences:

38

Flow fluctuation in longitudinal direction

Observables:

$$\mathcal{I}_{n}^{\eta} = \frac{V_{n}(-\eta)V_{n}^{*}(\eta_{\mathrm{ref}})}{V_{n}(\eta)V_{n}^{*}(\eta_{\mathrm{ref}})} \sim \langle \cos n \left[\Phi_{n}(\eta) - \Phi_{n}(-\eta)\right] \rangle$$

Significant decorrelation, not described by any models

Much stronger at lower \sqrt{s}

Flow fluctuation in longitudinal direction

Observables:

$$\boldsymbol{\mathcal{V}}_{n}^{\boldsymbol{\eta}} = \frac{\boldsymbol{V}_{n}(-\boldsymbol{\eta})\boldsymbol{V}_{n}^{*}(\boldsymbol{\eta}_{\mathrm{ref}})}{\boldsymbol{V}_{n}(\boldsymbol{\eta})\boldsymbol{V}_{n}^{*}(\boldsymbol{\eta}_{\mathrm{ref}})} \sim \langle \cos n \left[\Phi_{n}(\boldsymbol{\eta}) - \Phi_{n}(-\boldsymbol{\eta}) \right] \rangle$$

Significant decorrelation, not described by any models

Can't be explained by beam-rapidity scaling, not described by hydro model

Challenge for precision

Sub-nucl. dof Longi. structure

Challenge for precision

Y. Akamatsu, A. Mazeliauskas, D.Teaney 1606.07742

With varying length scale

Initial fluctuation Thermal fluctuation Critical fluctuation

. . .

non-hydro modes Jet quenching, HBT Resonance decays,

. . .

With varying length scale

Disentangle various time-scales via $\Delta \eta$ correlation, but how?

Resolve fluctuations at different time and length scale⁴⁵

Resolve fluctuations at different time and length scale

Charge transport

Net-baryon transport

background for CME

background for critical fluctuation

G. Denicol, C.Gale, S.Jeon, A.monnai, B.Schenke C.Shen 1804.10557

Large n coverage from forward upgrade is important

Small systems and early time dynamics

~30000 particles* ~2000 particles* ~6

~ 600 particles*

What is the smallest droplet of QGP created in these collisions?

 \rightarrow Change matter size, life-time and space-time dynamics @ RHIC and LHC

* Rough number in very high-multiplicity events, integrated over full phase space at LHC

Same 2nd-order viscous hydro equations describe all three systems

Actual space-time dynamics & properties should still be different!

- This does not mean $T^{uv}(\mathbf{x},t)_{pp}=T^{uv}(\mathbf{x},t)_{pPb}=T^{uv}(\mathbf{x},t)_{PbPb}$
- The pre-equilibrium effects are not the same

Unreasonable success of hydro?

 In far from equilibrium region, hydro still fit the data, but gives wrong viscosity

$$T_{\rm hydro}^{\mu\nu} = (\epsilon + P_B)u^{\mu}u^{\nu} + P_Bg^{\mu\nu} - \eta_B\sigma^{\mu\nu}$$

Small gradients $\eta_B \sim \eta$ Large gradients $\eta_B \rightarrow 0$

Also A.Kurkela, U.Wiedemann, B. Wu 1805.04081

Unreasonable success of hydro?

 In far from equilibrium region, hydro still fit the data, but gives wrong viscosity

$$T^{\mu\nu}_{\rm hydro} = (\epsilon + P_B)u^{\mu}u^{\nu} + P_Bg^{\mu\nu} - \eta_B\sigma^{\mu\nu}$$

Small gradients $\eta_B \sim \eta$ Large gradients $\eta_B \rightarrow 0$

Also A.Kurkela, U.Wiedemann, B. Wu 1805.04081

 Different models for early-time dynamics have similar average hydro-field, but different differential distri., e.g shear tensor π^{μν}(x).

Unreasonable success of hydro?

Different approaches with different setup can describe the same data

P. Romatschke, R. Weller 1701.07145

Hydrodynamics ,, 0-5%

L.He, T.Edmonds, Z.Lin, F.Liu, D. Molnar and F. Wang 1502.05572, G. Ma and A Bzdak 1406.2804

AMPT transport

Actual space-time dynamics are very different

Direct search for non-equilibrium features in v_n?

Response of the medium to quenched jet, Mach cone?

hard-soft correlations to understand relaxation of non-hydrodynamic perturbations

Look for systematic failure of gradient expansion of hydrodynamics

Nature of flow fluctuations at intermediate p_T ?

Summary

- Flow observables efficiently characterize particle correlations at $\tau = \infty$.
- Hydrodynamic model is a good tool to unfold flow data to extract space-time dynamics of QGP and its properties for $\tau < 10$ fm/c.
- Precision knowledge of HI collisions require more theoretical progress to disentangle contributions from different stages of evolution.

Some possible directions.

- Differential measurements of flow fluctuations, mixed correlations
- Observables to probe fluctuations at different time scales, transport mechanisms for charge and baryon number.
- Small systems to constrain the pre-equilibrium dynamics.
- Direct experimental search for effects of non-hydro dynamics.

HOT QUARKS 2018

Scientific Program

- QCD at high temperature/density and lattice QCD
- Initial state effects and Color Glass Condensate
- Relativistic hydrodynamics and collective phenomena
- Correlations and fluctuations
- Jets in the vacuum and in the medium
- Baryons and strangeness
- Heavy-flavour, dileptons and photons
- Application of String Theory and AdS/CFT
- Experimental techniques and future programs

Drganizing Committee:

Javier Abacete, Universidad de Granada (Spain) Jana Bielcikova, Nuclear Physics Institute ASCR, 250 68 Rez (Czech Republic) Alessandro Grelli, Utrecht University and Nikhef Amsterdam (The Netherlands) Hannah Petersen, FIAS (Germany) Lijuan Ruan, Brookhaven National Laboratory (USA) Bjoern Schenke, Brookhaven National Laboratory (USA) Sevil Salur, Rutgers University (USA) Anthony Timmins, Houston University (USA) Jorge Noronha, University of Sao Paulo (Brazil)

September 7-14 Texel, The Netherlands

A workshop for young scientists on the physics of ultrarelativistic nucleus-nucleus collisions

Temperature dependence of η/s

Niemi, Eskola, Paatelainen 1505.02677

