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Abstract

The propagation of a harmonic longitudinal wave through a medium of ultrarelativistic particles is considered in the frame of the first- and

second-order relativistic hydrodynamics theories. The hydrodynamic equations are solved analytically in the linearised regime. A comparison

with the numerical (lattice Boltzmann) solution of the relativistic Anderson-Witting-Boltzmann (AWB) equation validates the expressions for the

transport coefficients obtained via the Chapman-Enskog expansion. Some limitations of the first order theory which persist at small relaxation

times are discussed.

[V. E. Ambrus, Phys. Rev. C 97 (2018) 024914]

Conventions
@ Metric signature: 1, = diag(—1,1,1,1).

@ Nondimensionalisation with respect to the background state, such
thatc=ng=FPy=L = 1.

Linearised hydrodynamics
@ Wave propagates along z = u* = (1, 0,0, 3)T,
T = Fufu” + PA" 4+ g*u” + utq” + 11",
where £ = 3P, A* = n* + utuY and
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@ For monocromatic waves (k = 27t/ L) with small amplitudes, a
mode decomposition can be performed:
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@ T he conservation equations reduce to:

aon, — kB, = 0,
3a0 P, — 4k3, — kg, = 0,
403, + aq, + kO P, + k11, = O.

@ The system is closed by supplying constitutive eqgs. for g and 11
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where the 2nd order hydrodynamics (H2) are not present in the
1st order hydrodynamics (H1) formulation.

@ The Chapman-Enskog and Grad methods predict:
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Shear viscosity
@ For an adiabatic flow (dng = 6 Py = 0):

~ ~ Qg _
Bu2 =~ Bu1 = Bo (cos o,t — — sin a0t> et
8.7

where ag = k?n/6 and o, = %\/I — 3,%?’
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@ 7 is obtained by fitting the numerical data to 5

Heat conductivity

@ For By and dng = 0 (Case 2a) or § Py = 0 (Case 2b):
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where a) = k*\/4.
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Early time relaxation

@ For 5n0 — 5P0 — 0, ﬁ IS:
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@ When Bg = 0P, = 0, ,g in H1 does not approximate the H2 result:
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@ In H1, 3 oscillates with the same magnitude as the purely evanescent H2 sol.

Conclusion

@ Comparing numerical (LB) and analytic results confirms the C-E values for i
and X for the AWB equation.

@ H2 required to capture early time relaxation of TI and qg.

@ Insufficient degrees of freedom in H1 formulation results in inaccurate solutions
for 3 even at small 7.
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