AdS/CFT predictions for azimuthal and momentum correlations of heavy quarks in heavy ion collisions

R. Hambrock and W.A. Horowitz
University of Cape Town

Motivation & Outline

- Want to understand relevant coupling scale of QGP
- Need observables to differentiate between strong- and weakly-coupled energy loss mechanisms
- We compare perturbative QCD [2] with our AdS/CFT predictions [1] for azimuthal correlations of bottom quarks in Pb+Pb collisions (\(\sqrt{s} = 2.76\text{TeV}\))
- We probe with two plausible 't Hooft coupling constants, \(\lambda_1 = 5.5\) with \(T_{QCD} = T_{SYM}\), and \(\lambda_1 = 12\alpha_s \approx 11.3\) with \(\alpha_s = 0.3\) and \(E_{QCD} = E_{SYM}\)

Energy Loss Model

- Bottom quarks are propagated through the plasma via the energy loss mechanism \(D(p)\) or \(D_{\text{const}}\)

\[D(p) = -\mu_p \cdot F_1 + F_T^2 \]

where \(\mu = \pi \sqrt{X^2} / (2M_p)\) [1].

The stochastic equation of motion for a heavy quark is given by

\[\frac{d\vec{\chi}}{dt} = -\mu \vec{p}_\chi + \kappa \vec{\xi} \]

\[\kappa = \pi \sqrt{X^2} \gamma \]

\[\kappa_L = \frac{\gamma}{\kappa} \approx \pi \sqrt{X^2} \gamma \]

in GeV

\[\kappa_T = \pi \sqrt{X^2} \gamma \]

The correlations of transverse and longitudinal momentum kicks are given by

\[\langle F_T^2(t_1)F_T^2(t_2) \rangle = \kappa_T \delta(t_1 - t_2) \]

and

\[\langle F_L^2(t_1)F_L^2(t_2) \rangle = \kappa_L \delta(t_1 - t_2) \]

where

\[\kappa_T = 2T^2 / D = \pi \sqrt{X^2} \gamma \]

and

\[\kappa_L = \frac{\gamma}{\kappa} \approx \pi \sqrt{X^2} \gamma \]

\[\kappa_T = \pi \sqrt{X^2} \gamma \]

NLO Azimuthal Correlations

\[\frac{dN}{d\Delta p_T} \] correlations for NLO initialization of the \(D(p)\) model. The \([1-4]\text{GeV}\) correlations are entirely washed out, but the signal is still observable for the higher \(p_T\) classes.

\[R_{AA} \]

\[R_{AA} \] of prompt averaged \(D^0, D^+\) and \(D^{*+}\) compared with preliminary data from ALICE. The \(D(p)\) model breaks down for high \(p_T\) since the longitudinal fluctuations grow as \(T^2\).

Leading Order Correlations

- Azimuthal correlations similar for pQCD and AdS/CFT
- Momentum correlations exhibit order of magnitude difference for low \(p_T\)
- Initial momentum correlations reveal difference in momentum correlations is explained by bottom quarks pairs in a strongly coupled plasma being more strongly coupled in momentum than in a weakly coupled plasma

Comparison with pQCD

Initial \(p_T\) correlations

- \(\Delta p_T\) correlations for 40-60% centrality. Of note is the order of magnitude difference between the strong and weak coupling based correlations in the \([1-4]\text{GeV}\) momentum class. Naively, one may expect this difference to be caused by more efficient suppression of high \(p_T\) particles in the strongly coupled plasma, but as the initial momentum correlations show, this is not the case.

Conclusion

Acknowledgements

The authors wish to thank the South African National Research Foundation (NRF) and the SA-CERN Collaboration for generous support of this work.

References