Open charm measurements in NA61/SHINE at the CERN SPS **Pawel Staszel** Jagiellonian University for the NA61/SHINE Collaboration #### **Outline** - 1. Introduction - 2. Physics motivation for Charm measurements - 3. Performance of Small Acceptance Vertex Detector - 4. Proposed measurements beyond LS2 ## Introduction ### NA61/SHINE Experiment **Beam detectors and triggering** → a set of upstream scintillator and Cherenkov counters and beam Position detectors provides timing reference, charge and position measurements **Time Projection chambers** → four large four small volume TPC's serve as tracking detectors, provide PID **Time of Flight walls** → used for hadron identification **Projectile Spectator Detector (PSD)** → a calorimeter which is positioned downstream of the time of flight detectors measure energy of projectile fragments. **Small Acceptance Vertex Detector** → precise tracking close to the target ## Physics motivation ## Model predictions for $\langle c\overline{c}\rangle$ in central Pb+Pb at 150*A* GeV/*c* #### **HSD** Linnyk, Bratkovskaya, Cassing, IJMP E17 1367 #### **pQCD** Gavai et al. IJMP A 10 2999 Braun-Munzinger, J. Stachel, PLB 490, 196 #### HRG, Quark Coalesc. Stat. Gavai et al. IJMP A10 2999 Braun-Munzinger, J. Stachel, PLB 490, 196 #### **Quark Coalesc. Dyn.** Levai, Biro, Csizmadia, Csorgo, Zimanyi, JP G27, 703 #### **SMES** Gazdzicki, Gorenstein, APP B30, 2705 - Different models differ in predictions of $\langle c\overline{c} \rangle$ by factor ≈ 50 - To discriminate models the $\langle c\bar{c}\rangle$ produced in full phase space is needed - → measurement of open charm mesons ## Measurements of $\langle c\overline{c}\rangle$ #### 0-20% Pb+Pb at 150A GeV/c violation of isospin symmetry | $D^0 \approx$ | 2.6 D ⁺ | $\overline{D}{}^{0} \approx $ | 2.6 D ⁻ | | |-----------------------------|--------------------|--------------------------------|--------------------------|--| | 31% | 12% | 31% | 12% | | | | | | | | | mgner mass states | | | | | | D _s ⁺ | Λ_{c} | D_{s}^{-} | $\overline{\Lambda}_{c}$ | | 3% Hadrons containing charm considered for measurements in NA61/SHINE | Hadron | Decay channel | $c\bar{\tau} [\mu m]$ | BR | |----------------------|---------------------------------------|-----------------------|-------| | D^0 | $\pi^+ + \mathrm{K}^-$ | 123 | 3.89% | | D^+ | $\pi^+ + \pi^+ + \mathrm{K}^-$ | 312 | 9.22% | | D_{S}^{+} | $\pi^+ + \mathrm{K}^- + \mathrm{K}^+$ | 150 | 5.50% | | $\Lambda_{ m c}$ | $p+\pi^++K^-$ | 60 | 5.00% | Measuring \mathbf{D}^0 , $\overline{\mathbf{D}}^0$, \mathbf{D}^+ , \mathbf{D}^- provides good $\langle c\overline{c} \rangle$ estimate 5% 2% 5% ### J/ψ suppression as signal of deconfinement Medium reduces probability of J/ ψ production (H. Satz, Adv. High En. Phys. (2013) 2429) J/ψ normalized to DY measured by NA50 (Eur. Phys. J. C39, 335, 2005) Data was interpreted in terms of final state interaction in the deconfined medium created in nucleus-nucleus collisions. To validate this interpretation we need to control experimentally $\langle c\bar{c}\rangle$ → measurements of Open Charm!!! # Performance of **S**mall **A**cceptance **V**ertex **D**etector (SAVD) ## Vertex Detector tests with Pb+Pb at 150A GeV/c #### SAVD: - 16 MIMOSA-26 sensors located on 2 horizontally movable arms. - Target holder integrated with SAVD base plate #### **Achieved goals:** • tracking in the large track multiplicity environment 10 - precise Primary Vertex reconstruction - TPC and SAVD track matching - first search for D⁰ signal ### Main project components #### **MIMOSA-26AHR** - 1152x576 pixels of 18.4x18.4μm² - 3.5 μm resolution, 0.05% X₀ - Readout time: 115.2 μs, 50μm thin PICSEL Group, IPHC Strasbourg #### **ALICE ITS ladder** - Ultra light carbon fibre - $< 0.3\% X_0$ including water cooling St. Petersburg, CERN #### **CBM Micro Vertex Detector Prototype** - Sensor integration - Flex print cables, Front-end boards - Read-out based on TRB3 FPGA Board Goethe Universitet Frankfurt am Main ### Main project components (c.d.) #### System integration and project leadership: Jagiellonian University Krakow, supported by AGH Krakow, WUT Warsaw ## Why Vertex Detector is needed to measure open charm? $$D^0 \rightarrow \pi^+ + K^-$$ Vertex detector is needed to reconstruct **primary vertex** and **secondary vertexes** with high precision. - Daughters of D^0 (π and K) are recognized as a pair forming a secondary vertex displaced form the primary vertex - ct(D0) \simeq 122 µm, however, due to Lorentz boost ($\beta\gamma \approx 10$) the displacement is on the level of 1 mm. - This holds also for other charm mesons like D⁺, D⁻, D⁺_s - The Lorentz Boost makes the measurements significantly easier than in case of collider experiments ## Vertex Detector performance Spacial resolution of the sensor < 5µm as expected $$\sigma_{x/y} = \sqrt{\frac{2}{3}} \, \sigma_{dev_{x/y}}$$ Reconstruction of primary vertex allows to separate in- and out-target interactions Spacial primary vertex resolution: $$\sigma_x$$ = 5 μ m $$\sigma_v$$ = 1.8 μ m $$\sigma_z = 30 \ \mu m$$ Worse resolution in x due to presence of magnetic field (B_y) ## VD - TPC track matching Extrapolate SAVD tracks to TPC volume. Pre-selection: cut on y-slopes of tracks. After cuts on dx and dy clear correlation peaks are seen in dp_x and dp_z Matching with TPC provides: momenta and PID to VD tracks → invariant mass distribution #### VD: search for D^o First results for 140k (trigger set for detector test → not precise centrality measurement) #### **Background suppression** → **cuts on:** - 1. track $p_{\scriptscriptstyle T}$ - 2. track impact parameter d - 3. longitudinal distance V_z (pair vertex to primary vertex) - 4. parent impact parameter d_{p} #### **Analysis details:** - 1. Global fit (VD+TPCs) using Kalman Filter - 2. PID not used yet (should reduce background by factor of 5) Allocated beam time in 2018: 10M 0-20% central Pb+Pb \rightarrow 2.5k $D^0 + \overline{D}^0$ ### Performance for Xe+La at 150A GeV/c - Large statistic Xe+La data taken in late 2017 at 150A and 75A GeV/c for minimum bias and 0-20% central events. - Segmented target was used (tree 1mm thick La blocks squeezed together). The structure of the target can be well seen in the z_{prim} distribution plot. - Obtained primary vertex resolution: 1.3, 1.0 and 15 µm in x, y and z coordinate, respectively. Significant improvement as compare to test measurement due to better setup of sensor thresholds. - Xe+La data should allow for reinterpretation of J/ ψ yields measured by NA60 for medium size systems. # Proposed measurements beyond LS2 ## LS2 upgrades of NA61/SHINE setup Upgrades are needed to increase rate capability of NA61/SHINE by one order of magnitude to 1 kHz ## Anticipated results - Precise measurements of charm hadron production by NA61/SHINE are expected to be performed in 2022-2014 (see tables in A. Merzlaya poster). - The Lorentz boost makes the measurements significantly easier than in case of collider experiments. - Unlike in a typical collider experiment the acceptance extends down to p_T =0 - → accurate measurements of total charm meson yields. The proposed program will allow to perform systematic study of D^0 , D^0 , D^+ , D^- , (D^+_s) production versus collision energy and centrality ## Uniqueness of NA61/SHINE program - LHC and RHIC at high energies ($\sqrt{s}_{NN} \ge$ 200 GeV): significantly limited acceptance due to collider kinematics and related detector geometry - **RHIC BES** collider and fixed-target $(\sqrt{s}_{NN} = 3-39 \text{ GeV})$: measurement not considered in the current program - NICA (\sqrt{s}_{NN} < 11 GeV): measurements during stage 2 (after 2023) are under consideration (overlap in energy with NA61/SHINE) - **J-PARC-HI** ($\sqrt{s}_{NN} \le 6$ GeV): under consideration, may be possible after 2025. - FAIR SIS-100 (\sqrt{s}_{NN} < 5 GeV): subthreshold charm production measurements are considered. Systematic charm measurements are planed with SIS-300 → only NA61/SHINE is able to measure open charm in heavy ion collisions in full phase space in the near future ## Summary NA61/SHINE open charm production measurements started in 2017 with SAVD → expected first physics results soon After LS2 high statistic Pb+Pb data taking with upgraded detector is proposed The results from high statistic runs are expected to: - distinguish between many existing models of charm production in Pb+Pb collisions - initiate a measurement of collision energy dependence of open charm yield - verify signal of the QGP formation by measurements of centrality dependence of charm production ## Backup slides ## Measurement program with SAVD #### 2016: Pb+Pb at 150*A* GeV/c - Detector commissioning - Good detector performance - D⁰ likely seen #### 2017: Xe+La at 75 and 150A GeV/c - Improved sensor efficiency - Improved primary vertex resolution (dx=1.3μm, dy=1.0μm, dz=15μm) - Large statistics collected: - 5.1 MEvents@150AGeV/c - 4.0 MEvents @75A GeV/c - Analysis ongoing, expected good data quality - Expected open charm data suited for comparison with NA61/SHINE #### 2018: Pb+Pb at 150A GeV/c run scheduled ## Request for Open Charm measurements | Year | Beam | #days | #events | $\#(D^0 + \overline{D^0})$ | $\#(D^+ + D^-)$ | |------|----------------------------------|-------|---------|----------------------------|-----------------| | 2022 | Pb at 150 <i>A</i> GeV/ <i>c</i> | 42 | 250M | 38k | 23k | | 2023 | Pb at 150 <i>A</i> GeV/ <i>c</i> | 42 | 250M | 38k | 23k | | 2024 | Pb at $40A$ GeV/ c | 42 | 250M | 3.6k | 2.1k | | | 0-10% | 10–20% | 20–30% | 30-60% | 60-90% | 0–90% | |----------------------------|-------|--------|--------|--------|--------|-------| | $\#(D^0 + \overline{D^0})$ | 31k | 20k | 11k | 13k | 1.3k | 76k | | $\#(D^+ + D^-)$ | 19k | 12k | 7k | 8k | 0.8k | 46k | | $\langle W angle$ | 327 | 226 | 156 | 70 | 11 | 105 | #### Simulated results on D⁺ + D⁻ ## Anticipated results #### **SMES** predictions ## Particle ratios and fluctuations (2) Rapid changes in $K^+I\pi^+$ (HORN) were observed in Pb+Pb collisions. It was predicted within SMES as a signature of onset of deconfinement #### **NEW RESULTS:** - plateau like structure visible in p+p - Be+Be consistent with p+p • <K $^+>$ /< $\pi^+>$ in Ar+Sc in between p+p, Be+Be and Pb+Pb #### Tentative conclusions from 2D scan Completion of Ar+Sc analysis and new data for Xe+La awaited to verify this picture ## NA61/SHINE ## We would like to thank the CERN EP, BE, EN and IT Departments for the strong support of NA61/SHINE #### The NA61/SHINE Collaboration A. Aduszkiewicz 16, Y. Ali 13, E.V. Andronov 22, T. Antićić 3, B. Baatar 20, M. Baszczyk 14, S. Bhosale 11, A. Blondel²⁵, M. Bogomilov², A. Brandin²¹, A. Bravar²⁵, W. Bryliński¹⁸, J. Brzychczyk¹³, S.A. Bunyatov²⁰, O. Busygina¹⁹, A. Bzdak¹⁴, H. Cherif⁷, M. Ćirković²³, T. Czopowicz¹⁸, A. Damyanova²⁵, N. Davis¹¹, M. Deveaux⁷, P. von Doetinchem³⁰, W. Dominik¹⁶, P. Dorosz¹⁴. J. Dumarchez⁴, A. Datta³⁰, R. Engel⁵, A. Ereditato²⁴, G.A. Feofilov²², Z. Fodor^{8,17}, C. Francois²⁴, A. Garibov¹, M. Gaździcki^{7,10}, M. Golubeva¹⁹, K. Grebieszkow¹⁸, F. Guber¹⁹, A. Haesler²⁵, A.E. Hervé⁵, J. Hylen²⁶, S.N. Igolkin²², A. Ivashkin¹⁹, S.R. Johnson²⁸, K. Kadija³, E. Kaptur¹⁵, M. Kiełbowicz¹¹, V.A. Kireyeu²⁰, V. Klochkov⁷, V.I. Kolesnikov²⁰, D. Kolev², A. Korzenev²⁵, V.N. Kovalenko²², K. Kowalik¹², S. Kowalski¹⁵, M. Koziel⁷, A. Krasnoperov²⁰, W. Kucewicz¹⁴, M. Kuich 16, A. Kurepin 19, D. Larsen 13, A. László 8, T.V. Lazareva 22, M. Lewicki 17, B. Lundberg 26, B. Łysakowski 15, V.V. Lyubushkin 20, M. Maćkowiak-Pawłowska 18, B. Maksiak 18, A.I. Malakhov 20, D. Manić²³, A. Marchionni²⁶, A. Marcinek¹¹, A.D. Marino²⁸, K. Marton⁸, H.-J. Mathes⁵, T. Matulewicz¹⁶, V. Matveev²⁰, G.L. Melkumov²⁰, A.O. Merzlaya²², B. Messerly²⁹, Ł. Mik¹⁴, G.B. Mills²⁷, S. Morozov^{19,21}, S. Mrówczyński¹⁰, Y. Nagai²⁸, M. Naskręt¹⁷, V. Ozvenchuk¹¹ V. Paolone²⁹, M. Pavin^{4,3}, O. Petukhov^{19,21}, C. Pistillo²⁴, R. Płaneta¹³, P. Podlaski¹⁶, B.A. Popov^{20,4}, M. Posiadała ¹⁶, R.R. Prado ⁵, S. Puławski ¹⁵, J. Puzović ²³, R. Rameika ²⁶, W. Rauch ⁶, M. Ravonel ²⁵, R. Renfordt⁷, E. Richter-Was ¹³, D. Röhrich⁹, E. Rondio ¹², M. Roth⁵, B.T. Rumberger ²⁸, A. Rustamov ^{1,7}, M. Rybczynski ¹⁰, A. Rybicki ¹¹, A. Sadovsky ¹⁹, K. Schmidt ¹⁵, I. Selyuzhenkov ²¹, A.Yu. Seryakov²², P. Seyboth¹⁰, M. Słodkowski¹⁸, A. Snoch⁷, P. Staszel¹³, G. Stefanek¹⁰, J. Stepaniak ¹², M. Strikhanov ²¹, H. Ströbele ⁷, A. Shukla ³⁰, T. Šuša ³, A. Taranenko ²¹, A. Tefelska ¹⁸, D. Tefelski 18, V. Tereshchenko 20, A. Toia 7, R. Tsenov 2, L. Turko 17, R. Ulrich 5, M. Unger 5, F.F. Valiev²², D. Veberič⁵, V.V. Vechernin²², M. Walewski¹⁶, A. Wickremasinghe²⁹, C. Wilkinson²⁴, Z. Włodarczyk¹⁰, A. Wojtaszek-Szwarc¹⁰, O. Wyszyński¹³, L. Zambelli⁴, E.D. Zimmerman²⁸, and R. Zwaska²⁶