Open charm measurements in NA61/SHINE at the CERN SPS

Pawel Staszel

Jagiellonian University

for the NA61/SHINE Collaboration

Outline

- 1. Introduction
- 2. Physics motivation for Charm measurements
- 3. Performance of Small Acceptance Vertex Detector
- 4. Proposed measurements beyond LS2

Introduction

NA61/SHINE Experiment

Beam detectors and triggering → a set of upstream scintillator and Cherenkov counters and beam Position detectors provides timing reference, charge and position measurements

Time Projection chambers → four large four small volume TPC's serve as tracking detectors, provide PID

Time of Flight walls → used for hadron identification

Projectile Spectator Detector (PSD) → a calorimeter which is positioned downstream of the time of flight detectors measure energy of projectile fragments.

Small Acceptance Vertex Detector → precise tracking close to the target

Physics motivation

Model predictions for $\langle c\overline{c}\rangle$ in central Pb+Pb at 150*A* GeV/*c*

HSD

Linnyk, Bratkovskaya, Cassing, IJMP E17 1367

pQCD

Gavai et al. IJMP A 10 2999 Braun-Munzinger, J. Stachel, PLB 490, 196

HRG, Quark Coalesc. Stat.

Gavai et al. IJMP A10 2999 Braun-Munzinger, J. Stachel, PLB 490, 196

Quark Coalesc. Dyn.

Levai, Biro, Csizmadia, Csorgo, Zimanyi, JP G27, 703

SMES

Gazdzicki, Gorenstein, APP B30, 2705

- Different models differ in predictions of $\langle c\overline{c} \rangle$ by factor ≈ 50
- To discriminate models the $\langle c\bar{c}\rangle$ produced in full phase space is needed
 - → measurement of open charm mesons

Measurements of $\langle c\overline{c}\rangle$

0-20% Pb+Pb at 150A GeV/c

violation of isospin symmetry

$D^0 \approx$	2.6 D ⁺	$\overline{D}{}^{0} \approx $	2.6 D ⁻	
31%	12%	31%	12%	
mgner mass states				
D _s ⁺	Λ_{c}	D_{s}^{-}	$\overline{\Lambda}_{c}$	

3%

Hadrons containing charm considered for measurements in NA61/SHINE

Hadron	Decay channel	$c\bar{\tau} [\mu m]$	BR
D^0	$\pi^+ + \mathrm{K}^-$	123	3.89%
D^+	$\pi^+ + \pi^+ + \mathrm{K}^-$	312	9.22%
D_{S}^{+}	$\pi^+ + \mathrm{K}^- + \mathrm{K}^+$	150	5.50%
$\Lambda_{ m c}$	$p+\pi^++K^-$	60	5.00%

Measuring \mathbf{D}^0 , $\overline{\mathbf{D}}^0$, \mathbf{D}^+ , \mathbf{D}^- provides good $\langle c\overline{c} \rangle$ estimate

5%

2%

5%

J/ψ suppression as signal of deconfinement

Medium reduces probability of J/ ψ production (H. Satz, Adv. High En. Phys. (2013) 2429)

 J/ψ normalized to DY measured by NA50 (Eur. Phys. J. C39, 335, 2005)

Data was interpreted in terms of final state interaction in the deconfined medium created in nucleus-nucleus collisions.

To validate this interpretation we need to control experimentally $\langle c\bar{c}\rangle$

→ measurements of Open Charm!!!

Performance of **S**mall **A**cceptance **V**ertex **D**etector (SAVD)

Vertex Detector tests with Pb+Pb at 150A GeV/c

SAVD:

- 16 MIMOSA-26 sensors located on 2 horizontally movable arms.
- Target holder integrated with SAVD base plate

Achieved goals:

• tracking in the large track multiplicity environment

10

- precise Primary Vertex reconstruction
- TPC and SAVD track matching
- first search for D⁰ signal

Main project components

MIMOSA-26AHR

- 1152x576 pixels of 18.4x18.4μm²
- 3.5 μm resolution, 0.05% X₀
- Readout time: 115.2 μs, 50μm thin
 PICSEL Group, IPHC Strasbourg

ALICE ITS ladder

- Ultra light carbon fibre
- $< 0.3\% X_0$ including water cooling

St. Petersburg, CERN

CBM Micro Vertex Detector Prototype

- Sensor integration
- Flex print cables, Front-end boards
- Read-out based on TRB3 FPGA Board Goethe Universitet Frankfurt am Main

Main project components (c.d.)

System integration and project leadership:

Jagiellonian University Krakow, supported by AGH Krakow, WUT Warsaw

Why Vertex Detector is needed to measure open charm?

$$D^0 \rightarrow \pi^+ + K^-$$

Vertex detector is needed to reconstruct **primary vertex** and **secondary vertexes** with high precision.

- Daughters of D^0 (π and K) are recognized as a pair forming a secondary vertex displaced form the primary vertex
- ct(D0) \simeq 122 µm, however, due to Lorentz boost ($\beta\gamma \approx 10$) the displacement is on the level of 1 mm.
- This holds also for other charm mesons like D⁺, D⁻, D⁺_s
- The Lorentz Boost makes the measurements significantly easier than in case of collider experiments

Vertex Detector performance

Spacial resolution of the sensor < 5µm as expected

$$\sigma_{x/y} = \sqrt{\frac{2}{3}} \, \sigma_{dev_{x/y}}$$

Reconstruction of primary vertex allows to separate in- and out-target interactions

Spacial primary vertex resolution:

$$\sigma_x$$
= 5 μ m

$$\sigma_v$$
= 1.8 μ m

$$\sigma_z = 30 \ \mu m$$

Worse resolution in x due to presence of magnetic field (B_y)

VD - TPC track matching

Extrapolate SAVD tracks to TPC volume.

Pre-selection: cut on y-slopes of tracks.

After cuts on dx and dy clear correlation peaks are seen in dp_x and dp_z

Matching with TPC provides: momenta and PID to VD tracks

→ invariant mass distribution

VD: search for D^o

First results for 140k (trigger set for detector test → not precise centrality

measurement)

Background suppression → **cuts on:**

- 1. track $p_{\scriptscriptstyle T}$
- 2. track impact parameter d
- 3. longitudinal distance V_z (pair vertex to primary vertex)
- 4. parent impact parameter d_{p}

Analysis details:

- 1. Global fit (VD+TPCs) using Kalman Filter
- 2. PID not used yet (should reduce background by factor of 5)

Allocated beam time in 2018: 10M 0-20% central Pb+Pb \rightarrow 2.5k $D^0 + \overline{D}^0$

Performance for Xe+La at 150A GeV/c

- Large statistic Xe+La data taken in late 2017 at 150A and 75A GeV/c for minimum bias and 0-20% central events.
- Segmented target was used (tree 1mm thick La blocks squeezed together). The structure of the target can be well seen in the z_{prim} distribution plot.
- Obtained primary vertex resolution: 1.3, 1.0 and 15 µm in x, y and z coordinate, respectively. Significant improvement as compare to test measurement due to better setup of sensor thresholds.
- Xe+La data should allow for reinterpretation of J/ ψ yields measured by NA60 for medium size systems.

Proposed measurements beyond LS2

LS2 upgrades of NA61/SHINE setup

Upgrades are needed to increase rate capability of NA61/SHINE by one order of magnitude to 1 kHz

Anticipated results

- Precise measurements of charm hadron production by NA61/SHINE are expected to be performed in 2022-2014 (see tables in A. Merzlaya poster).
- The Lorentz boost makes the measurements significantly easier than in case of collider experiments.
- Unlike in a typical collider experiment the acceptance extends down to p_T =0
- → accurate measurements of total charm meson yields.

The proposed program will allow to perform systematic study of D^0 , D^0 , D^+ , D^- , (D^+_s) production versus collision energy and centrality

Uniqueness of NA61/SHINE program

- LHC and RHIC at high energies ($\sqrt{s}_{NN} \ge$ 200 GeV): significantly limited acceptance due to collider kinematics and related detector geometry
- **RHIC BES** collider and fixed-target $(\sqrt{s}_{NN} = 3-39 \text{ GeV})$: measurement not considered in the current program
- NICA (\sqrt{s}_{NN} < 11 GeV): measurements during stage 2 (after 2023) are under consideration (overlap in energy with NA61/SHINE)
- **J-PARC-HI** ($\sqrt{s}_{NN} \le 6$ GeV): under consideration, may be possible after 2025.
- FAIR SIS-100 (\sqrt{s}_{NN} < 5 GeV): subthreshold charm production measurements are considered. Systematic charm measurements are planed with SIS-300

→ only NA61/SHINE is able to measure open charm in heavy ion collisions in full phase space in the near future

Summary

NA61/SHINE open charm production measurements started in 2017 with SAVD → expected first physics results soon

After LS2 high statistic Pb+Pb data taking with upgraded detector is proposed

The results from high statistic runs are expected to:

- distinguish between many existing models of charm production in Pb+Pb collisions
- initiate a measurement of collision energy dependence of open charm yield
- verify signal of the QGP formation by measurements of centrality dependence of charm production

Backup slides

Measurement program with SAVD

2016: Pb+Pb at 150*A* GeV/c

- Detector commissioning
- Good detector performance
- D⁰ likely seen

2017: Xe+La at 75 and 150A GeV/c

- Improved sensor efficiency
- Improved primary vertex resolution (dx=1.3μm, dy=1.0μm, dz=15μm)
- Large statistics collected:
 - 5.1 MEvents@150AGeV/c
 - 4.0 MEvents @75A GeV/c
- Analysis ongoing, expected good data quality
- Expected open charm data suited for comparison with NA61/SHINE

2018: Pb+Pb at 150A GeV/c run scheduled

Request for Open Charm measurements

Year	Beam	#days	#events	$\#(D^0 + \overline{D^0})$	$\#(D^+ + D^-)$
2022	Pb at 150 <i>A</i> GeV/ <i>c</i>	42	250M	38k	23k
2023	Pb at 150 <i>A</i> GeV/ <i>c</i>	42	250M	38k	23k
2024	Pb at $40A$ GeV/ c	42	250M	3.6k	2.1k

	0-10%	10–20%	20–30%	30-60%	60-90%	0–90%
$\#(D^0 + \overline{D^0})$	31k	20k	11k	13k	1.3k	76k
$\#(D^+ + D^-)$	19k	12k	7k	8k	0.8k	46k
$\langle W angle$	327	226	156	70	11	105

Simulated results on D⁺ + D⁻

Anticipated results

SMES predictions

Particle ratios and fluctuations (2)

Rapid changes in $K^+I\pi^+$ (HORN) were observed in Pb+Pb collisions. It was predicted within SMES as a signature of onset of deconfinement

NEW RESULTS:

- plateau like structure visible in p+p
- Be+Be consistent with p+p

• <K $^+>$ /< $\pi^+>$ in Ar+Sc in between p+p, Be+Be and Pb+Pb

Tentative conclusions from 2D scan

Completion of Ar+Sc analysis and new data for Xe+La awaited to verify this picture

NA61/SHINE

We would like to thank the CERN EP, BE, EN and IT Departments for the strong support of NA61/SHINE

The NA61/SHINE Collaboration

A. Aduszkiewicz 16, Y. Ali 13, E.V. Andronov 22, T. Antićić 3, B. Baatar 20, M. Baszczyk 14, S. Bhosale 11, A. Blondel²⁵, M. Bogomilov², A. Brandin²¹, A. Bravar²⁵, W. Bryliński¹⁸, J. Brzychczyk¹³, S.A. Bunyatov²⁰, O. Busygina¹⁹, A. Bzdak¹⁴, H. Cherif⁷, M. Ćirković²³, T. Czopowicz¹⁸, A. Damyanova²⁵, N. Davis¹¹, M. Deveaux⁷, P. von Doetinchem³⁰, W. Dominik¹⁶, P. Dorosz¹⁴. J. Dumarchez⁴, A. Datta³⁰, R. Engel⁵, A. Ereditato²⁴, G.A. Feofilov²², Z. Fodor^{8,17}, C. Francois²⁴, A. Garibov¹, M. Gaździcki^{7,10}, M. Golubeva¹⁹, K. Grebieszkow¹⁸, F. Guber¹⁹, A. Haesler²⁵, A.E. Hervé⁵, J. Hylen²⁶, S.N. Igolkin²², A. Ivashkin¹⁹, S.R. Johnson²⁸, K. Kadija³, E. Kaptur¹⁵, M. Kiełbowicz¹¹, V.A. Kireyeu²⁰, V. Klochkov⁷, V.I. Kolesnikov²⁰, D. Kolev², A. Korzenev²⁵, V.N. Kovalenko²², K. Kowalik¹², S. Kowalski¹⁵, M. Koziel⁷, A. Krasnoperov²⁰, W. Kucewicz¹⁴, M. Kuich 16, A. Kurepin 19, D. Larsen 13, A. László 8, T.V. Lazareva 22, M. Lewicki 17, B. Lundberg 26, B. Łysakowski 15, V.V. Lyubushkin 20, M. Maćkowiak-Pawłowska 18, B. Maksiak 18, A.I. Malakhov 20, D. Manić²³, A. Marchionni²⁶, A. Marcinek¹¹, A.D. Marino²⁸, K. Marton⁸, H.-J. Mathes⁵, T. Matulewicz¹⁶, V. Matveev²⁰, G.L. Melkumov²⁰, A.O. Merzlaya²², B. Messerly²⁹, Ł. Mik¹⁴, G.B. Mills²⁷, S. Morozov^{19,21}, S. Mrówczyński¹⁰, Y. Nagai²⁸, M. Naskręt¹⁷, V. Ozvenchuk¹¹ V. Paolone²⁹, M. Pavin^{4,3}, O. Petukhov^{19,21}, C. Pistillo²⁴, R. Płaneta¹³, P. Podlaski¹⁶, B.A. Popov^{20,4}, M. Posiadała ¹⁶, R.R. Prado ⁵, S. Puławski ¹⁵, J. Puzović ²³, R. Rameika ²⁶, W. Rauch ⁶, M. Ravonel ²⁵, R. Renfordt⁷, E. Richter-Was ¹³, D. Röhrich⁹, E. Rondio ¹², M. Roth⁵, B.T. Rumberger ²⁸, A. Rustamov ^{1,7}, M. Rybczynski ¹⁰, A. Rybicki ¹¹, A. Sadovsky ¹⁹, K. Schmidt ¹⁵, I. Selyuzhenkov ²¹, A.Yu. Seryakov²², P. Seyboth¹⁰, M. Słodkowski¹⁸, A. Snoch⁷, P. Staszel¹³, G. Stefanek¹⁰, J. Stepaniak ¹², M. Strikhanov ²¹, H. Ströbele ⁷, A. Shukla ³⁰, T. Šuša ³, A. Taranenko ²¹, A. Tefelska ¹⁸, D. Tefelski 18, V. Tereshchenko 20, A. Toia 7, R. Tsenov 2, L. Turko 17, R. Ulrich 5, M. Unger 5, F.F. Valiev²², D. Veberič⁵, V.V. Vechernin²², M. Walewski¹⁶, A. Wickremasinghe²⁹, C. Wilkinson²⁴, Z. Włodarczyk¹⁰, A. Wojtaszek-Szwarc¹⁰, O. Wyszyński¹³, L. Zambelli⁴, E.D. Zimmerman²⁸, and R. Zwaska²⁶