Metric anisotropies and emergent anisotropic hydrodynamics

Introduction

e Expansion of a locally equilibrated fluid 1s considered in an anisotropic
space-time given by Bianchi type I metric.

e We obtain expressions for number density, energy density and pressure com-
ponents in terms of anisotropy parameters of the metric.

e In the case of an axis-symmetric Bianchi type I metric, we show that they
are 1dentical to that obtained within the setup of anisotropic hydrodynamics.

e We further consider the case when Bianchi type I metric is a vacuum solution
of Einstein equation: the Kasner metric.

e For axis-symmetric Kasner metric, we discuss the implications of our results
in the context of anisotropic hydrodynamics.

The metric

The most general anisotropic Bianchi type I metric is [1]
ds® = dt* — gl-jd:vida:j (1)

When there 1s no a prior1 preferred direction the metric sitmply takes a diagonal
form given as

ds® = dt* — A%(t)da® — B*(t)dy* — C*(t)d=". (2)

The quantities A(t), B(t), and C(t) are scale factors for the expansion along =z,
y, and z axes.

Collisionless stress-energy tensor

The stress energy tensor and conserved current is defined as
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We consider ultrarelativistic particles and 1ignore the particle masses. Therefore
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The gas decouples from its surrounding happens at time ¢ = ¢, such that after
time t( the gas experiences a collision-less adiabatic expansion or contraction
as specified by the metric. Also, Liouville’s theorem guarantees that the dis-
tribution function f(x, p) remains constant throughout the phase space for all
time during the evolution. This in turn implies that the energy £ and the tem-

perature I', at a given time ¢, are red-shifted by the same amount, 1.e.,
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where z 1s the usual red-shift factor.

The 3-momenta p; are constants of motion, i.e., dp;/dT = 0, we get:
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Using the above equations, we find the red-shift factor z to be
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From the above equation, we see that the characteristic temperature is de-
pendent on the direction of motion of particles. For axis-symmetric case, 1.e

z =

1114((250)) — ég((t?) = ¢ and &(tto)) = &3, we get:
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where A = cos ¢/, we have defined P = Py =P, and P, = P).
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Integrating Eqgs. (8)-(11), we get
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for ¢ > 1 where £ = 5—?2’, while we substitute £ as = for & < 1. One also arrives
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at the same results by considering the collisionless Boltzmann equation [2].

The Kasner metric

We consider the vacuum solutions of Einstein’s equation, the Kasner metric [3]
ds? = dt? — t20dz? — 20dy® — 2¢d2? (14)

where a, b and c are three parameters related to each other by the equations

(15)

Since the particle current must be conserved, the number density n of particles
that 1s measured by a co-moving observer satisfies the continuity equation

a+b+c=1, a’+ b+ =1

dn -
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The non-vanishing Christoffel symbols for Kasner metric are:
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Using Eq. (17) in Eq. (16) we have
dn n dn n noto
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It 1s interesting to note that the above equation holds for all Kasner type expan-
sion. The Milne metric turns out to be a special case of Kasner metric.

If we impose an additional constraint of azimuthal symmetry, we have only
two possibilities for (a, b, ¢):
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CaseI: (0,0,1) Case II: (— - ——) . (19)
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Case I: usual Milne coordinates; Case-II: a new finding in the context of az-
imuthally symmetric anisotropic hydrodynamics.

Imposing the condition in Eq. (19) on the variable £ gives us

t2 t2

Case II: £ = t—g (20)

Case I refers refers to longitudinal expansion while Case II denotes transverse

expansion. We note that Case I corresponds to the usual free streaming solution

in Bjorken expansion.
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Evolution of longitudinal and transverse pressures, scaled by the energy den-
sity, for Case I (red) and Case II (blue).
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