Charged Particle Angular and Momentum Distributions around jets in 5.02 TeV PbPb **Collisions measured by ATLAS**

Akshat Puri for the ATLAS Collaboration May 19th, 2018

The ATLAS Detector

suited for iet

measurements

This detector is well-

This measurement

and tracking system.

luminosity of 0.49 nb-1

luminosity of 25 pb-1

Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and pp collisions at 5.02 TeV with ATLAS at the LHC

Akshat Puri for the ATLAS Collaboration Department of Physics, University of Illinois at Urbana-Champaign

uses the calorimeter The Pb+Pb data was recorded in 2015 and had an integrated The pp data was also recorded in 2015 and had an integrated

Motivation

- The Quark Gluon Plasma (QGP) created in Pb+Pb collisions can be probed with iets
- Inclusive jet production rates are modified in central Pb+Pb collisions compared to pp collisions [2-4].
- Di-jet and photon-jet pairs have unbalanced transverse momentum [5-8]
- Energy of the parton showering process migrates out of the jet cone.
- This measurement determines the radial distribution of transverse momentum inside and around the jet cone

Observables

The charged particle transverse momentum distribution in and around a jet a a distance r, normalized by the number jets and area of the annulus under investigation is measured as [9]

$$(p_{\mathrm{T}}, r) = \frac{1}{N_{\mathrm{jet}}} \frac{1}{2\pi r} \frac{\mathrm{d}^2 n_{\mathrm{ch}}}{\mathrm{d} r \mathrm{d} r}$$

$$D(p_{\rm T}) = \frac{1}{N_{\rm jet}} \frac{\mathrm{d}n_{\mathrm{ch}(r)}}{\mathrm{d}p_{\rm T}}$$

- This quantity can be integrated over the jet cone to give $D(p_T)$, as defined in
- Comparison between Pb+Pb and *pp* collisions is given as:

$$R_{D(p_{\mathrm{T}},r)} = \frac{D(p_{\mathrm{T}},r)_{\mathrm{Pb}+\mathrm{Pb}}}{D(p_{\mathrm{T}},r)_{pp}}$$

Analysis cuts and corrections

Analysis cuts

- → jets: R = 0.4, |y| < 1.3, 100 < p_T^{jet} < 400 GeV</p>
- charged particles: $|\eta| < 2.5$, $1.6 < p_T < 63$ GeV, within r < 0.6 of jet axis
- Corrections
- efficiency corrections (η , p_T)
- underlying event subtraction
- two dimensional Bayesian Unfolding (in jet and track p_T)
- jet position resolution correction Bin by bin unfolding

- $R_{D(pT, r)}$ increases with increasing $p_{\rm T}^{\rm jet}$ for low $p_{\rm T}$ particles, with no significant $p_{T^{jet}}$ dependence seen
- from Ref. [10].
- $p_{\rm T}$ > 4 GeV are shown at the bottom right

Observables

- axis, per unit area per jet
- Reported as a function of track p_{T} , centrality, and r

$$D(p_{\rm T}, r) = \frac{1}{N_{\rm jet}} \frac{1}{2\pi r} \frac{1}{2\pi r}$$
$$R_{D(p_{\rm T}, r)} = \frac{D(p_{\rm T}, r)_{\rm P}}{D(p_{\rm T}, r)}$$

• Density of charged particles in an annulus at a distance r from the jet

 $d^2 n_{\rm ch}(r)$ $drdp_{T}$

b+Pb

2

Underlying Event

- Biggest experimental challenge
- Estimated using data driven techniques
- Strongly dependent on p_T and centrality

Results: $D(p_T, r)$ and $R_{D(p_T, r)}$

p_T < 4 GeV: Broadening</p>p_T > 4 GeV: Narrowing

Results: D(p_T, r) and R_{D(pT, r)}

4

Results: pr^{jet} dependence

arXiv:1805.05424

Increase in number of particles as a function of p_T^{jet} for charged particles with 1 < p_T < 4 GeV

Results: pr^{jet} dependence

arXiv:1805.05424

Increase in number of particles as a function of p_T^{jet} for charged particles with $1 < p_T < 4 \text{ GeV}$

Low p_T (1.6 - 2.5 GeV): yield increases with p_T^{jet} High p_T (6.3 - 10.0 GeV): No p_T^{jet} dependence

Results: pr^{jet} dependence

arXiv:1805.05424

Increase in number of particles as a function of p_T^{jet} for charged particles with $1 < p_T < 4 \text{ GeV}$

Low p_T (1.6 - 2.5 GeV): yield increases with p_T^{jet} High p_T (6.3 - 10.0 GeV): No p_T^{jet} dependence

More information on the differential distributions of charged particles in jets

