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Electro-Magnetic field in HICs
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Solve Maxwell Equations for point-like charges at
fixed transverse coord. moving in +(-)z direction
with velocity B.
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Convolute with nuclear transverse density of
spectators then sum forward(+) and backward(-)

B=(m.)2=~10G

Tuchin PRC88, Adv. High En. Phys. 1 (2013)
Giirsoy, Kharzeev, Rajagopal PRC89 (2014)
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Electro-Magnetic field in HICs

RHIC Au-Au @200 GeV , b=7.5 fm
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In light quark sector v,=103-104. ..
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Tuchin PRC88, Adv. High En. Phys. 1 (2013)
Giirsoy, Kharzeev, Rajagopal PRC89 (2014)
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but HQs have the right features.



E.M. field & Heavy Quarks in HICs

RHIC Au-Au @200 GeV , b=7.5 fm
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[S.K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina, V. Greco, PLB768 (2017)]
Main properties of HQs in QGP:

» Myq>>Noep 2 HQare produced in hard pQCD processes (decoupled from CME).
» Myq >>T = thermal production of HQ is negligible (out-of-equilibrium).

> Teq2Toep >>T; 2 probe the QGP evolution retaining the initial kick from E.M. field.



Boltzmann approach for HQ dynamics in QGP
{Puaﬁ + unv(X)Pyag} fuq = Ca2|fuql

Collision Integral

Stress tensor (E,B)
= Dissipative

BM Eq. solved numerlca”y [Scardina, Das, Minissale, Plumari and Greco, PRC 96 (2017)]
+
Hadronization: [Plumari, Minissale, Das, Coci and Greco, EPJ C 78 (2018)]
fragm. & coalescence [poster Minissale at QM 18]

Good description of R,,(p;) and v,(p;) simultaneously
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Boltzmann approach for HQ dynamics in QGP
[Puaff + qF uu(X)Puaﬁ] fiq = Ca|fuq]

Maxwell tens. (E,B) Collision Integral
= Dissipative
[Scardina, Das, Minissale, Plumari and Greco, PRC 96 (2017)]
[Plumari, Minissale, Das, Coci and Greco, EPJ C 78 (2018)]
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In agreement with other models:
overiep 2000 ' [Deng and Huang PRC93 (2016)]
[Jiang, Lin, Liao, PRC 94 (2016); PRC 95 (2017)]




RESULTS:

Smaller formation time and longer thermalization allow HQs to gain larger v,

compared to light quarks.
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CONCLUSlONS talk Plumari at QM18

< V,is a powerful probe of the strong E.M. field created at initial stage of HICs.
[Das, Plumari, Chatterjee, Alam, Scardina and Greco, PLB768 (2017)]

< V,is very sensitive to the combined effect of vorticity + E.M. field.
- THEORY: dynamics, modelling EXPERIMENTS: v, at RHIC and LHC
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Direct flow of heavy mesons
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Introdu

I ultra-relativistic Heavy-lon Collisions (HICs) very strong initial Electro-

Magnetic (E.M.) fields are created inducing a vorticity in the reaction plane that|
is odd under charge exchange, allowing to distinguish it from the large vorticity of|
the bulk matter due to the initial angular momentum conservation. Heavy Quarks|
(HQs), mainly charm and bottom, have the right features to probe the impact of|
this E.M. field. [1]

Mes > Raco Qs are produced in hard pQCD processes
not coupled with chiral magnetic effects.

My > To FQ thermal production is negligible
(out of equilibirum).
7~ 1/2M.;  |HQs formation time scale is comparable with

time when E.M. field reaches maximum value.
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Model (l1): Boltzmann Equation
We describe HQ dynamics in QGP by means of Relati

ic Boltzmann Equatiol

[Pud2 + aF ()P} fuo = Carlfinc] @)
The single particle phase-space distribution function fiq(x, p) is sampled using test-
particle method. The Boltzmann-like collision integral Cy|fiiq] is the kernel of|
elastic scattering between charm and bulk partons and it is solved by means of a
stochastic algorithm. [2]
Fyu is the Maxwell strength field constructed from B and E (see: Model (1))
Main ingredients:
() HQ pr-spectra from FONLL [Cacciari et al. 2012], while quarks and gluons

distributed according to thermal + minijet (pr > 2-3 GeV)

Teq > Taap > 77 |HQs probe all phase-space evolution of QGP
and retain the initial kick from E.M. field
M > q =87 |AQ dynamics reduced to Brownian motion,
but at T ~ 0.3 GeV the strong coupling
g(T) ~ 2: this condition is challenged

for charm, while still good for bottom.

[Objectives |
In this work we describe the propagation of HQs in the Quark-Gluon Plasma (QGP)
within a relativisti transport h where we consider an en-
hancement of the interaction strength near critical temperature T, according to/
Lattice QCD (LQCD) thermodynamics. In this framework we are able to simultane-
ously describe the nuclear suppression factor Raa(pr) and the elliptic flow vo(pr) of]
charmed mesons both at RHIC and LHC energies. [2][3]
Our main goal is to include a time-dependent external E.M. field based on a
realistic model of E.M. charge and current density at initial stage of HICs and study|
its effect on HQ dynamics. The presence of an E.M. field results in a formation of a
finite direct flow vi =< cos(¢,) >=< p./pr >. [4] Moreover, the favorable|
conditions presented in this Introduction are responsible of the significant enhance-|
ment of v for HQs with respect to the light quark sector that hopefully could be|
measured as a splitting of D[c3] and D[¢g] mesons at RHIC and LHC experiments.

Model (1): Electro-Magnetic Field
We follow the scheme in Fig. (1a). [4]

XA

Fo.=qE+--pxB
- s P)>0 E,
We calculate E.M. field £7,B*(E~,B~)
generated by a single charge e located at
position X, = (x., ) in transverse plane  Jya — z,n
and moving towards the +2(-z) direction >
with speed 3 (rapidity 7 = arctan($3))
solving Maxwell Equations. [5]

(a)

—0:B
0; + ) E+efo(z — B3R, — %1) wos =-E

Then we fold these elementary fields with
the nuclear transverse density profile p_
for spectator protons and we sum for- s
ward () and backward (—7) contribu-

tions (Eq.(1) for B and similar for E;)
Results for E.M. as function of evolution

time are shown in Fig. (1b).

(b)
Figure 1: 1(a) lllustration of v formation due
to EM. filed in HICs. 1(b) Time variation of
B and E dominant components at fixed 7.
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Time variation of B induces an electric field E, i.e. a Faraday current in the
conducting QGP Jraraday = 0wE . Meanwhile Lorentz force g x B acts on longitu-
dinal expanding medium and drifts charged particles along the direction orthogonal
to B and flow velocity akin to the classical Hall effect (Jj;,). The combination
of Jraraday + Jitan leads to a charge and rapidity odd dependent v;. We assume also:
1) Constant electric conductivity from LQCD (oe = 0.023fm ?)

2)  Neglect bulk modification due to E.M. currents.

3)  No event-by-event fluctuations.

Contact Information. Email: coci@lns.infn.it

(b)  Shadowing is included as a parametrization of EPS09 [Eskola et al. 2009]

(c) Interaction between charm and bulk partons, in terms of drag coefficient
4(T) = 7,1, has a nearly constant behavior close to T, and slightly in-
creases with T: 7 ~ 0.15 — 0.3 fm 1. [2]

(d) Charm b ization by + ion model. [6]

(2) Experimental data from STAR (b) Experimental data from STAR
collab. PRL 113 (2014). collab. PRL 118 (2017)

(€) Experimental data from ALICE (d) Experimental daa from ALICE
collab. JHEP 09 (2012). collab, PRL 111 (2013).

Figure 2: Raa(pr) and va(pr) of D mesons at RHIC and LHC within Boltzmann transport approach.

In Fig. (3a) we present our predictions for the direct flow vy of D-D at RHIC en-
ergies as function of rapidity. Following charm evolution we have observed that v;
saturates at t ~ 1-2 fm which is consistent with the time of persistence of intense/
E.M. field (see Fig.(1b)). In Fig. (3b) we relate the amount of produced v; due to
initial E.M. field with thermalization time 7, of charm quarks. [1]

(a)
Figure 3: 3(a) Predicted vi(n) for D-D at RHIC collisions. 3(b) Slope parameter of charm direct flow
|dvic/dn| at mid-rapidity from same conditions at RHIC as function of charm drag coefficient 7.

Our results indicate that v; is an excellent probe
for investigating the strong E.M. field created at
initial stage of HICs. :
PRELIMINARY: Within this model we can also
introduce an initial vorticity due to angular mo-
mentum conservation and study its effects on HQ -
dynamics coupled to E.M. field looking at possible Figure 4: vi(y) for D-D mesons in

changes on the production of v (see Fig (4)). [7] Eslizmson model coupedto il
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