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Abstract

Dileptons (I*1) are produced throughout all stages of heavy-ion collisions (HIC) through various production mechanisms. Since leptons have a small interaction cross section with the
strongly interacting medium, they carry pristine information about the medium'’s properties. Dileptons produced within the intermediate mass region (IMR, My < M+~ < M;y) result
predominantly from the decay of correlated charm but also arise from thermal radiation of the hot and dense medium. The inverse slope parameter of the thermally produced dileptons in the
IMR provides a measurement of the medium's temperature at early times which is free from radial flow effects [1]. The installation of the Muon Telescope Detector (MTD) at STAR allows a|
measurement of the dimuon (4*4:") production in HICs over a large invariant mass range for the first time. Data has been collected with the full MTD from Au+Au collisions at ySyy = 200 GeV/
and from p+p collisions at s = 200 GeV. These two datasets allow for new opportunities to measure the dimuon invariant mass spectra at STAR. Before any dimuon measurements can be
made, muons must be identified. This poster presents muon identification employing Deep Neural Networks (DNN) and compares it with other multi-variate techniques. Applications of the
DNN technique for data-driven purity measurements are discussed.

Introduction and Motivation

Dileptons provide an excellent penetrating probe of the medium
Leptons interact through the electromagnetic force, not via strong force —

they carry pristine information about the medium'’s properties

Dilepton pairs are created throughout the entire lifetime of the system —
physics from all stages can be probed by studying the invariant mass spectra

NA60’s dimuon measurements in In+In [2] showed that precise dilepton

measurements can provide information about chiral symmetry restoration s s
et

and the created medium’s temperature at early times
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Muon Telescope Detector (MTD) at STAR
s STAR Detector

Multi Resistive Plate Chamber
(MRPC) based detector installed
outside magnet

Efficient for p;>1.0 GeV/c
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Provides hit location with spatial
resolution of ~2cm in AY and AZ
Provides precise time resolution
~100 ps of hits
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Classifiers are compared by observing
their background rejection power as a
function of signal efficiency.

Deep Neural Networks (DNN) and
Boosted Decision Trees (BDT) are found
to be significantly more powerful than
traditional techniques.

DNNs are found to be (1-5%) better than

BDTs and DNNs are more robust against
small differences between MC and data.
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Multivariate Muon Identification

Compare multivariate algorithms for identification of muons with MTD
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Signal: Primary muons and secondary

muons that decay inside tracking detector
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1. Evaluate DNN for tracks
in data (grey)

2. Generate signal and
background templates by
evaluating DNN on
simulated tracks

3. Template fit the data
distribution (grey) to
extract the yield of 1 7,
K, and p.
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Fit to DN response can be
projected back onto input variables
to veriy the fit quality

single track PID
efficiency and purity for
a tracks with a DNN
response >0.9 in p+p
collisions at y5=200
GeV. This cut s provides
approximately 65-70%
signal purity at all pr.

Muon Purity Measurement
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Summary and Outlook

Top: Raw p* 1~ invariant mass
spectrain p+p collisions at
/=200 GeV for traditional PID
and for DNN PID.

DNN PID substantially improves
the significance of the w, ¢, and
W(25) resonances.

Bottom: The simulated u* ™
invariant mass spectra for p+p
collisions at /s = 200 GeV for

the MTD's kinematic acceptance.

The cé contribution is
determined using the Pythia
Event Generator(3].

Final background and efficiency

estimations are in progress.
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Chamber (MRPC) based detector
installed outside magnet steel

STAR DEtECtOr With MTD MTD is a Multigap Resistive Plate

~ 4

Particle identification information:

 Hit location with spatial
resolution of ~ 1-2cm in AY and
AZ

B Precise time resolution ~100 ps

of hits
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Neural Network Response
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Signal: Primary muons and secondary muons
that decay inside tracking detector

How is the network architecture decided? Background:
=» optimize signal vs. background separation power ¢ 17, K, p punch through

on a grid of #hidden layers and #neurons in o 1 — u+vand K- u+ v decays outside
each layer + prefer simplest architecture tracking detector
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Example: MTD AZ
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1. Apply DNN to muon candidate tracks in data
(grey)

2. Generate signal and background templates by
evaluating DNN on MC tracks

" 3. Template fit the data distribution (grey) to
DN Response extract the yields of u, T, K, and p.

x2/ ndf 135.1 /109
po 0.9818 + 0.0071

Fit / Data
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1D Likelihood Ratios
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Algorithms trained
using ROOT’s
TMVA package
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Tighter Cut Looser Cut

Comparison of several
techniques shows that
Deep Neural Networks
perform the best (up to 5%
better than BDT for low pr
tracks)

Monte Carlo shows that
DNN vastly out-performs
traditional PID techniques

Can we see this
improvement in the
data?
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* Significance and S/B of w and ¢ peaks drastically improve MW' (GeVic)

Measurement of W(25) possible with neural net PID

=» Neural network clearly out-performs traditional identification techniques
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