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Abstract
Dileptons (#$#%) are produced throughout all stages of heavy-ion collisions (HIC) through various production mechanisms. Since leptons have a small interaction cross section with the
strongly interacting medium, they carry pristine information about the medium’s properties. Dileptons produced within the intermediate mass region (IMR, &' < &)*)+ < &,/.) result
predominantly from the decay of correlated charm but also arise from thermal radiation of the hot and dense medium. The inverse slope parameter of the thermally produced dileptons in the
IMR provides a measurement of the medium's temperature at early times which is free from radial flow effects [1]. The installation of the Muon Telescope Detector (MTD) at STAR allows a
measurement of the dimuon (/$/%) production in HICs over a large invariant mass range for the first time. Data has been collected with the full MTD from Au+Au collisions at 011� = 200 GeV
and from p+p collisions at 0� = 200 GeV. These two datasets allow for new opportunities to measure the dimuon invariant mass spectra at STAR. Before any dimuon measurements can be
made, muons must be identified. This poster presents muon identification employing Deep Neural Networks (DNN) and compares it with other multi-variate techniques. Applications of the
DNN technique for data-driven purity measurements are discussed.
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Muon	Telescope	Detector	(MTD)	at	STAR
STAR	Detector

Muon	
Detector

Magnet	
Steel

MTD	ΔZ	for	simulated		/ and	3 in	
p+p collisions	at	 0� =200	GeV

• Multi	Resistive	Plate	Chamber	

(MRPC)	based	detector	installed	

outside	magnet

• Efficient	for	45>1.0	GeV/c

• Provides	~45%	azimuthal	coverage	

in	|6|	<	0.5

• Provides	hit	location	with	spatial	

resolution	of	~2cm	in	ΔY	and	ΔZ

• Provides	precise	time	resolution	

~100	ps of	hits

Multivariate	Muon	Identification
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Hidden	Layers

Input	Layer Signal:	Primary	muons	and	secondary	
muons	that	decay	inside	tracking	detector
Background:
• 3,	K,	4 punch	through
• 3 → / + 9 and	K	→ / + 9 decays	
outside	tracking	detector	

Compare	multivariate	algorithms	for	identification	of	muons	with	MTD

Ideal	Classifier

Classifiers	are	compared	by	observing	
their	background	rejection	power	as	a	
function	of	signal	efficiency.

Deep	Neural	Networks	(DNN)	and	
Boosted	Decision	Trees	(BDT)	are	found	
to	be	significantly	more	powerful	than	
traditional	techniques.

DNNs	are	found	to	be	(1-5%)	better	than	
BDTs	and	DNNs	are	more	robust	against	
small	differences	between	MC	and	data.

Algorithms	trained	
using	ROOT’s	
TMVA	package	

Summary	and	Outlook
• Top:	Raw	/$/% invariant	mass	

spectra in	p+p collisions	at	
0� =200	GeV	for	traditional	PID	

and	for	DNN	PID.
• DNN	PID	substantially	improves	

the	significance	of	the	;,=,	and	
Ψ(2A) resonances.

• Bottom:	The	simulated	/$/%

invariant	mass	spectra	for	p+p
collisions	at	 0� =	200	GeV	for	
the	MTD’s	kinematic	acceptance.

• The	CC̅	contribution	is	
determined	using	the	Pythia	
Event	Generator[3].

• Final	background	and	efficiency	
estimations	are	in	progress.

Introduction	and	Motivation
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Dileptons provide	an	excellent	penetrating	probe	of	the	medium
• Leptons	interact	through	the	electromagnetic	force,	not	via	strong	force	–

they	carry	pristine	information	about	the	medium’s	properties
• Dilepton pairs	are	created	throughout	the	entire	lifetime	of	the	system	–

physics	from	all	stages	can	be	probed	by	studying	the	invariant	mass	spectra
• NA60’s	dimuon measurements	in	In+In [2]	showed	that	precise	dilepton

measurements	can	provide	information	about	chiral	symmetry	restoration	
and	the	created	medium’s	temperature	at	early	times	

Data	Driven	Muon	Purity	Measurement
1. Evaluate	DNN	for	tracks	

in	data	(grey)
2. Generate	signal	and	

background	templates	by	
evaluating	DNN	on	
simulated	tracks

3. Template	fit	the	data	
distribution	(grey)	to	
extract	the	yield	of	/, 3,
K,	and	p.
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nEF
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MTD	ΔTOF

MTD	Backleg
MTD	Cell

MTD	Module
Bias

Fit	to	DNN	response	can	be	
projected	back	onto	input	variables	

to	verify	the	fit	quality

Single	track	PID	
efficiency	and	purity	for	
a	tracks	with	a	DNN	
response	>	0.9	in	p+p
collisions	at	 0� =200	
GeV.	This	cut	is	provides	
approximately	65-70%	
signal	purity	at	all	45.
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Schematic	diagram	of	MTD	strips
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DNN	response	>	0.9
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STAR	Detector	with	MTD

Muon		Telescope	Detector

Magnet	Steel

MTD	is	a	Multigap Resistive	Plate	
Chamber	(MRPC)	 based	detector	
installed	outside	magnet	steel

Particle	identification	information:
• Hit	location	with	spatial	

resolution	of	~	1-2cm	in	ΔY	and	
ΔZ

• Precise	time	resolution	~100	ps
of	hits

simulation
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Hidden	Layers

Input	Layer

Signal:	Primary	muons	and	secondary	muons	
that	decay	inside	tracking	detector
Background:
• 𝜋,	K,	𝑝 punch	through
• 𝜋 → 𝜇 + 𝜈 and	K	→ 𝜇 + 𝜈 decays	outside	
tracking	detector	

Neural	Network	Response

Global	DCA
Charge

n𝜎*

MTD	Δ𝑍
MTD	Δ𝑌

MTD	ΔTOF

MTD	Backleg
MTD	Cell

MTD	Module
Bias	Control

➜ optimize signal vs. background separation power
on a grid of #hidden layers and #neurons in
each layer + prefer simplest architecture

2

How	is	the	network	architecture	decided?
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Project	DNN	
fit	back	onto	
input	
variables

Example:	MTD	ΔZ
Δ𝑍 =	𝑧123456758 − 𝑧:5;<=258

1.	Apply	DNN	to	muon	candidate	tracks	in	data	
(grey)
2.	Generate	signal	and	background	templates	by	
evaluating	DNN	on	MC	tracks
3.	Template	fit	the	data	distribution	(grey)	to	
extract	the	yields	of	𝜇, 𝜋, K,	and	p.
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4
Looser	CutTighter	Cut

Comparison	of	several	
techniques	shows	that	
Deep	Neural	Networks	
perform	the	best	(up	to	5%	
better	than	BDT	for	low	𝑝?
tracks)

Monte	Carlo	shows	that	
DNN	vastly	out-performs	
traditional	PID	techniques

Can	we	see	this	
improvement	in	the	
data?		
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Neural	Network	PID

Traditional	PID

𝝎 𝝓

𝑱/𝚿

𝚿 𝟐𝐒 !

• Significance	and	S/B	of	𝜔	and	𝜙	peaks	drastically	improve	
• Measurement	of	Ψ(2𝑆) possible	with	neural	net	PID
➜ Neural	network	clearly	out-performs	traditional	identification	techniques


