

From Raw Data to Physics Results I & II

Rachid Mazini Academia Sinica, Taiwan

5th African School of Physics UNAM, Windhoek, Namibia 4th July 2018

Outline

- To present the essential ideas on how to use HEP detectors measurements to extract physics results at the LHC
 - Emphasis put on methods used mostly in ATLAS
- Introduction
- Basic mesurements with HEP detectors
 - Tracks
 - Calorimeter cluster energy
 - Reconstruction of Physics objects
- HEP data
- Physics analysis example

Data analysis in HEP experiments

- Collect data from sub-detectors channels (millions)
- Decide to read out everything or only interesting events (Trigger)
- Build the event (put info together)
- Store the data
- Analyze them
 - reconstruction, user analysis algorithms, data volume reduction

This lecture !!

- Compare data and theory
- Other components of physics analysis are part of other lectures:
 - Monte Carlo detector simulation
 - Event Generators
 - Statistical analysis

The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC)

Proton-proton collisions at the LHC

Collision: What happens?

- During collisions of e.g. 2 particles energy is used to create new particles
- Particles produced are non stable and will decay in other (lighter) particles
- Cascade of particles is produced
- Therefore
 - We cannot "see" the interaction
 - We need to identify all final particles and their properties in order to retrieve the "history" of the physics process. In HEP words, we need to reconstruct the event.
- HEP detectors have to give us all needed information

From raw data to physics results

A more realistic collision picture

Detectors in HEP experiments

Global Detector Systems

Overall Design Depends on:

- Number of particles
- Event topology
- Momentum/energy
- Particle type

Limited solid angle (dΩ□ coverage (forward)
Easy access (cables, maintenance)

"full" solid angle dΩ coverage
Very restricted access

The ATLAS and CMS Detectors

11. IVIGLIII / 10

. .

How to detect particles in a detector

Tracking detector

-Measure charge and momentum of charged particles in magnetic field

Electro-magnetic calorimeter –Measure energy of electrons, positrons and photons

Hadronic calorimeter

-Measure energy of hadrons (particles containing quarks), such as protons, neutrons, pions, etc.

Neutrinos are only detected indirectly via 'missing energy' not recorded in the calorimeters

Muon detector –Measure charge and momentum of muons

Detecting particles: electrons and muons

Detecting particles: photons

I II III

					1
	2.4 MeV	1.3 GeV	170 GeV	0	
cks	u	С	t	Ŷ	
1a1	4.8 NeV	104 NeV	4.2 GeV	å	
ō,	d	s	b	9	50
	-	-	~	31 Gev	0
	<2 eV	<2 eV	<2 eV	Z	ŝ
eptons	v.	v.	v.	80 GeV	Ă
	-e	·μ	- 1	W	
	0.5 NeV	16 MeV	1.8 GeV	126 GeV	
н	е	μ	τ	н	
				a second really	

Detecting particles: jets

Detecting particles: non interacting particles

I II III

Also "invisible" particles from DM, SUSY...

In the transverse plane:

 $\sum \vec{p}_{\mathrm{T}} = 0$

Missing Transverse Momentum (ME_T)

What do we really measure in HEP detectors?

Tracks: charges, momentum, Time-of-flight, energy loss

Energy deposit in calorimeter: clusters

ATLAS has 3 tracking detectors: pixel, SCT, TRT (straw tubes)

Sequence:

1. Creation of 3-dimensional Space Points in Pixel and SCT (Si-Layers)

From raw data to physics results

ATLAS has 3 tracking detectors: pixel, SCT, TRT (straw tubes)

- 1. Creation of 3-dimensional Space Points in Pixel and SCT (Si-Layers)
- 2. Search for Track Seeds with Space Points in Si-Layers

ATLAS has 3 tracking detectors: pixel, SCT, TRT (straw tubes)

- 1. Creation of 3-dimensional Space Points in Pixel and SCT (Si-Layers)
- 2. Search for Track Seeds with Space Points in Si-Layers
- 3. Track Fit of Seeds found and ambiguity processing

ATLAS has 3 tracking detectors: pixel, SCT, TRT (straw tubes)

- 1. Creation of 3-dimensional Space Points in Pixel and SCT (Si-Layers)
- 2. Search for Track Seeds with Space Points in Si-Layers
- 3. Track Fit of Seeds found and ambiguity processing
- 4 Extrapolation into TRT and search for compatible measurements

ATLAS has 3 tracking detectors: pixel, SCT, TRT (straw tubes)

- 1. Creation of 3-dimensional Space Points in Pixel and SCT (Si-Layers)
- 2. Search for Track Seeds with Space Points in Si-Layers
- 3. Track Fit of Seeds found and ambiguity processing
- 4 Extrapolation into TRT and search for compatible measurements
- 5. Track fit of Pixel, SCT and TRT measurements

ATLAS has 3 tracking detectors: pixel, SCT, TRT (straw tubes)

- 1. Creation of 3-dimensional Space Points in Pixel and SCT (Si-Layers)
- 2. Search for Track Seeds with Space Points in Si-Layers
- 3. Track Fit of Seeds found and ambiguity processing
- 4 Extrapolation into TRT and search for compatible measurements
- 5. Track fit of Pixel, SCT and TRT measurements
- 6. Track scoring and track selection

Tracking in Muon Detector

- Obviously very similar to inner detector tracking
 - But much less combinatorics to deal with
- Reconstruct tracks in muon and inner detector and combine them
- Strategy
 - Find tracks in the muon system
 - Match with track in inner tracker
 - Combine track measurements
 - Consistent with MIP

Little or no energy in calorimeters

Reconstructing calorimeter energy

- Reconstruct energy deposited by charged and neutral particles
- Determine position of deposit, direction of incident particles
- Be insensitive to noise and un-correlated energy (pileup)

Reconstructing calorimeter energy

- Galorimeters are segmented in cells
- Typically a shower extends over several cells
 - Useful to reconstruct precisely the impact point from the "center-of-gravity" of the deposits in the various cells
- Example CMS Crystal Calorimeter:
 - electron energy in central crystal ~ 80 %, in 5x5 matrix around it ~ 96 %
- So task is : identify these clusters and reconstruct the energy they contain

Calorimeter cluster energy

- Clusters of energy in a calorimeter are due to the original particles
 - Clustering algorithm groups individual channel energies
 - Don't want to miss any; don't want to pick up fakes

Careful tuning of thresholds needed

- needs usually learning phase
- adapt to noise conditions
- too low : pick up too much unwanted energy
- * too high : loose too much of "real" energy. Corrections/Calibrations will be larger

Reconstructing physics objects

How to combine all information from the detector to identify final state particles and measure their properties?

Why do we need to reconstruct all of this...

- To measure the particles and decays produced in the collisions
- Some important physics channels at the LHC with
 - Electrons and muons ("easy" to identify)
 - Many Standard model measurements such as W/Z, top, dibosons ...
 - Searches for Higgs, Susy, exotics, e.g. H→4I, Z'→2I
 - Photons

***** Direct photons, $H \rightarrow \gamma \gamma$, $G \rightarrow \gamma \gamma$...

Taus

Jets

Jet cross-section, jet multiplicies, many Susy channels

- missing energy
 - W→Iv precision measurements, many Susy channels, indirect Dark Matter searches, Extra dimensions...

How particles are reconstructed?

- ***** Final state SM particles: e, μ , τ , ν , γ , Hadrons
- Each of these particles interact with the detector in a different way:
 - e, μ , τ are theoretically similar, however:
 - e leaves a track and its energy mostly in the EM calorimeter
 - μ leaves a track, passes through all calorimeters into the muons chambers
 - * τ , in its hadronic decay channel, looks like a jet
 - Decays within the Inner detector
 - Leaves many tracks (1-3), EM and Hadronic energy

EM energy without a track	Photon
EM energy with a track	Electron
Hadronic energy without a track	Neutral Hadron
Hadronic energy with a track	Charged Hadron
Hadronic energy with many tracks	Collimated hadrons (jet, tau)
ID and muon chambers track	Muon
Missing transverse energy	Neutrino
Missing longitudinal energy	Beam remnants
Displaced secondary vertex	In-flight decay, B-mesons

Physics objects reconstruction

Electrons and Photons

- Energy deposit in calorimeter
 - * "Narrow" shower shape in EM calorimeter
 - Energy nearly completely deposited in EM calorimeter
 - Little or no energy in had calorimeter (hadronic leakage)
- Electrons have an associated track in inner detector
- If there is no track found in front of calorimeter: photon
 - But be careful, photon might have converted before reaching the calorimeter

Muons reconstruction

- Because of it's long lifetime, the muon is basically a stable particle for us ($c\tau \sim 700$ m)
- It does not feel the strong interaction
 - Therefore, they are very penetrating
- It's a minimum ionising particle (MIP)
 - Only little energy deposit in calorimeter
- However, at high energies (E>0.2 TeV) muons can sometimes behave more like electrons!
 - At high energies, radiative losses begin to dominate and muons can undergo bremsstrahlung
- Muons are identified as a track in the muon chambers and in the inner tracking detectors
- Both measurements are combined for the best track results

Muons

Jet Reconstruction

- A jet is a collection of collimated particles
 - Tracks
 - Energy clusters
- We reconstruct a jet by combining this information in order to "collect the corresponding particles from hadronization
 - 2 main jet algorithms
 - Cone

From raw data to physics results

Example of reconstructed jets

Event with 10 reconstructed jets with p_T>50 GeV
Important features for physics object reconstruction

From raw data to physics results

R. Mazini AS

Importance of energy resolution

- $H \rightarrow \gamma \gamma$ Toy example: Signal peak on exponential background.
- 2 different signal resolutions. Same number of signal events in each peak
- Would discover the left hand signal much quicker!

Very important to build the detector to give you the best resolution. But also to optimize the reconstruction algorithms and calibrations to give the best resolution possible for that detector. 38

Pile up

- Increasing luminosity comes with a price
- More interactions per bench crossing

Interaction with the interesting physics
 process may be lost

Reconstructing the correct tracks in high pile-up

Z->µµ event in ATLAS. With 11 reconstructed

With 11 reconstructed vertices.

Tracks with transverse momentum $p_T > 0.5 GeV$ are shown

How can we do physics analysis with such a huge number of tracks in the detector?

zini AS

Reconstructing the correct tracks in high pile-up

Z->µµ event in ATLAS.

With 11 reconstructed vertices.

Tracks with transverse momentum p_T>2GeV are shown

How can we do physics analysis with such a huge number of tracks in the detector?

Reconstructing the correct tracks in high pile-up

Z->µµ event in ATLAS.

With 11 reconstructed vertices.

Tracks with transverse momentum p_T>10GeV are shown

How can we do physics analysis with such a huge number of tracks in the detector?

Selecting high pT tracks, makes the event cleaner, hence easier to analyze.

BUT. It might also reduce its physics zini Asontent. 42 Important steps from detector measurements to physics analysis

Data handling and reduction in HEP

Monte Carlo Simulation in HEP analysis

What do we do?

Road from detector measurements to physics results

Cross section

The cross section represents the probability of a physics process to occur.
 Number of events

Integrated luminosity

Measured cross sections In ATLAS

We can predict the expected number of events of a process for a fixed L
 Towards physics results at the LHC III & IV
 R.Mazini AS Taiwan
 49

Cross section

It is too simple to be true!

- A cross section is not just counting events
- ***** Not only the studies process occurs \Rightarrow **Background events.**

A detector is never perfect:

Limited geometrical acceptance

Coverage, holes, cracks, higher electronic noise...

Identification of particles is not 100% efficient

Limited by kinematic, resolutions...

Interesting event can be missed:

Trigger inefficiency

- Do we really know exactly the physics we are studying?
 - Uncertainty on theoretical models?

Monte Carlo simulation of everything?

Cross section measurement

Example of cross section measurement

Z⁰ production at the LHC

Measuring Z⁰ cross section at the LHC

- Z⁰ boson decays to lepton or quark pairs
 - * We can reconstruct it in the e⁺e⁻ or $\mu^+\mu^-$ decay modes
- Discovery and study of the Z⁰ boson was a critical part of understanding the electroweak force
- Measuring the Z⁰ cross-section at the LHC important test of theory
 - Does the measurement agree with the theoretical prediction at LHC collision energy?

Analysis chain for Z⁰ cross section measurement

Z⁰ cross section measurement

How do we know if it's a Z⁰:

Identify Z decays using the invariant mass of the 2 leptons $M^2 = (L_1 + L_2)^2$ where $L_i = (E_i, \underline{p}_i) = 4$ -vector for lepton i Under assumption that lepton is massless compared to mass of Z⁰ $=> M^2 = 2 E_1 E_2 (1 - \cos \vartheta_{12})$ where ϑ_{12} = angle between the leptons

Reconstruct the electron and muon energy and direction. Then can calculate the mass.

Select Z⁰ events with analysis cuts':

-Events with 2 high momentum electrons or muons

-Require the electrons or muons are of opposite charge

- With di-lepton mass close to the Z⁰ mass (e.g. 70<m_{I+I-}<110 GeV) Very little background in the Z⁰ mass region From raw data to physics results

Estimation of background events

- MC estimation of the background
 - MC is used to estimate the number of background events
 - Have to trust MC cross section calculation
 - Have to trust MC generation process and detector simulation
 - Simply count number of MC events expected:
 - Normalised MC events to data Luminosity
 - Put MC samples through event selection
 - Done foe WW.WZ,ZZ, top

- Data-driven estimation of the background
 - There are processes where we don't trust the MC
 - W+Jets process:
 - Very difficult to calculate
 - Large theoretical uncertainties in normalization
 - Very difficult to model the rate of jets faking electrons
 - QCD Multijet processes:
 - Standard Model processes involving light quarks and gluons
 - Dominates all events at the LHC
 - We do not trust the MC

Other kinematic variables for Z⁰ analysis

Z⁰ cross section measurement

Theoretically:

Cross-section calculated for:

- Specific production mechanism (pp, pp, e⁺e⁻)
- Centre-of-Mass of the collisions

Experimentally:

 $\sigma(pp \rightarrow Z) = (N_{OBS} - N_{BKG})/L \epsilon$ Looks like simple counting experiment. But need to also calculate **uncertainty** on the cross-section – measurement without an uncertainty is useless.

Two components to the uncertainty: Statistical: $\sim \sqrt{N_{OBS}}$ Systematic:

- How well do we know the background?
- How well do we know the efficiency?
- How well do we know the luminosity? Most of the work in the physics analysis is trying to understand the systematic uncertainties related to the above questions.

From raw data to physics results

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations

- Data-set and Monte Carlo samples
- Trigger
- Object definitions
- Background dete
- Systematic uncer
- Statistical metho
- Results
- Interpretations]

The data and simulation samples used in the analysis. Data for the measurement / search, simulation to compare data to predictions.

Data-set specifics:

◎ Data quality ⇒ Good run list.
 ◎ Luminosity.

Monte carlo sample specifics:

Generator, tunes.Statistics.

- Data-set and Monte Carlo samples
- Trigger
- Object defin
- Background det
 A
- Systematic uncer
- Statistical methol
- Results
- Interpretations]

The trigger used to collect the data with.

Trigger specifics:

- Prescales; typically unprescaled triggers are used, prescaled triggers for QCD / high stat measuments.
- Trigger (in)efficiencies.

- Data-set and Monte Carlo samples
- Trigger

Resu
 Res
 Resu
 Resu
 Resu
 Resu
 Resu
 Resu
 Resu

- Object definitions and event selections
- 0 The exact definition of objects (electrons, muon, jets, ...) and how these are combined in selecting events to be analyzed. 0 **Object definition specifics:** Stat

 - Calibrations.
 - **Event selection specifics:**
- Inter Event cleaning (e.g. from noise and cosmics).
 - Momentum, geom. acceptance and multiplicity of objects.
 - Higher level cuts, such as invariant mass.
 - "Signal regions". 0

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

Events that are imitating the signal we are searching for or measuring.

Background determination specifics:

- Can/must be data-driven or simulation-based.
- Walidation regions" and "control regions" required. These can use different triggers wrt signal regions.

- Data-set and Monte Carlo
- Trigger
- Object definitions and even
- Background determination
 A sector of the secto
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

- Any 'intermediate' measurement we have performed carries uncertainties (statistical and systematic).
- Systematic" uncertainties are introduced by inaccuracies in the methods used to perform the measurement.
- Efficiencies, acceptance, number of events, luminosity, cross sections used in Monte Carlo scaling...
- Some of them are "centrally" assessed by the performance groups of an experiment. Some of them are analysis-specific.

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and ever
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

Dealing with large data-sets, we use statistical methods to make sense of the numbers we measure.

Typical method:

Do a fit to extract signal from background.

Methodologies can vary a lot, but nowdays they are pretty unified within and across experiments.

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results -
- Interpretations]

Produce the results in tables and plots. These include details of what is found in the signal region.

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

Put the results into context: interpret them in theoretical models.

Summary

- We have seen a very simplified picture on the road from data to physics results
- Fundamental measurements from HEP detectors are somehow simple. Tracks from tracking detectors and energy from calorimeters
- Combinations of these pieces of information are used in complicated reconstruction algorithms to identify particles and measure their properties.
- Physics analysis consists on exploiting all information in order to do:
 - Precision measurements for known physics processes
 - Searches for new physics
- An important part of the analysis consists of estimating all sources of systematic uncertainites and minimizing them.
 - Experimetal uncertainties related to detector properties, reconstruction algorithms, calibration, object properties, pile-up
 - Theoretical uncertaities: event generators, background estimation.

How to detect particles in a detector

- There can be also some special detectors to identify particles
 - * $\pi/K/p$ identification using Cerenkov effect
 - Dedicated photon detector
 - Luminosity detectors
- There are other things which I won't explain
 - Separation (dE/dx)
 Energy loss measurement in tracking detector for π/K/p
 - **Transition radiation detectors for e**/ π separation

Tracking

- This task is divided into different subtasks:
 - Hit reconstruction
 - Track finding/pattern recognition
 - Track fitting/parameter estimation
 - Note, often the steps are not separated but integrated for best performance
- Hit reconstruction
 - space points, sometimes called clusters (set of position measurements)^{0.05}
 - determine space point uncertainties
- Track finding
 - find track seeds in "rough" way
 - The aim is to group these measurements together in subsets, each subset containing measurements orginating from one charged particle

R. Mazini AS

Tracking by eye - Can you find the 50 GeV Track?

Track Fitting

- Track fitting:
 - Input space points belonging to track candidate
 - Take into account effect due to
 - multiple scattering
 - energy loss
 - magnetic field (use detailed map)
 - This also depends on particle type.
 Electrons need special treatment due to bremsstrahlung
- Fit output
 - typically momentum (absolute value), direction and position at the surface of the detector unit closest to the beam

Example: Kalman Filter

- Recursive filter
 - Start from track seed and perform a fit and extrapolate, attach one or more hits
 - add hit(s) based on some criteria, refit, extrapolate and add more hits etc.
 - at some point the recursive algorithm has finished and a final track fit can be applied to the attached hits

Example: Combinatorial Kalman Filter

Try different possible assignments of measurements

Tracking by eye - Can you find the 50 GeV Track?

Pile-up: the high luminosity dilema

- When the LHC collides bunches of protons we can get more than one p-p interaction – this is called pileup
- The number of pileup interactions depends on the LHC parameters
 - How many protons per bunch
 - How small the bunches have been squeezed
- For last year we have on average ~20 interactions every time the bunches cross
- These pileup interactions give lots of low momentum tracks
- We can usually identify which tracks are from which interactions by combining tracks that come from the same vertex
- Pileup can cause difficulties for some physics analyses
 - Also causes reconstruction to need more computing power
- But allows us to get more luminosity

Cluster Energy calibration

- Calibration constants can be complex functions of the position and energy of the cluster
 - ***** $E^{CALIB} = f(E^{MEASURED}, \eta, \phi, ...)$, f includes various calibration constants

B-tagging

- b hadrons are
 - Iong-lived (cτ~450 μm)
 - Massive
- Signature: displaced vertex
 - Important parameters are
 - d₀ = impact parameter
 (point closest approach
 in the x-y plane)
 - L_{xy} = distance between primary and secondary vertices
- As LHC is a b- (and even top) factory, b-tagging is a very useful measure

Cluster reconstruction

- Input to clustering:
 - Cells calibrated at the EM scale
- Sum energy in EM calo, correct for losses in upstream material, longitudinal leakage and possible other losses between calo layers (if applicable)

* e.g.
$$E_{rec} = \lambda (b + W_0 E_{pres} + E_1 + E_2 + W_3 E_3)$$

Typically need to find best compromise between best resolution and best linearity

e/jet and γ /jet separation

- Leakage into 1st layer of hadronic calorimeter
- Analyse shape of the cluster in the different layers of the EM calo
 - "narrow" e/γ shape vs "broad" one from mainly jets
- Look for sub-structures within one cluster
 - Preshower in CMS, 1st EM layer with very fine granularity in ATLAS
 - Solution is very useful for π⁰→γγ / γ separation, 2 photons from π⁰ tend to end up in the same cluster at LHC energies

Transverse shower shape in 2nd EM layer (ATLAS)

Bremsstrahlung

- Electrons can emit photons in the presence of material
- At LHC energies:
 - electron and photon (typically) end up in the same cluster
 - Electron momentum is reduced
 - E/p distribution will show large tails
- Methods for bremsstrahlung recovery
 - Gaussian Sum Filter, Dynamic Noise Adjustment
 - Use of calorimeter position to correct for brem
 - Kink reconstruction, use track measurement before kink

Conversion reconstruction

- Photons can produce electron pairs in the presence of material
- Find 2 tracks in the inner detector from the same secondary vertex
 - Need for outside-in tracking
- However, can be useful:
 - Can use conversions to x-ray detector and determine material before calorimeter (i.e. tracker)

Hadronic decay of tau-lepton

- Decays
 - 17% in muons
 - 17% in electrons
- For reconstruct hadronic taus
 - Look for "narrow" jets in calorimeter (EM + hadronic)
 - i.e. measure EM and hadronic radius (measurement of shower size in η-φ): ∑E_{cell}·R²_{cell}/∑E_{cell}
 - Form ΔR cones around tracks
 - tau cone
 - isolation cone
 - associate tracks (1 or 3)

e ⁻ vv	17.8%
μ- νν	17.4%
h⁻v	49 %
π-ν	11%
K-ν	0.7%
ρ- ν	25.4%
h⁺h⁻h⁻v	15%

Hadronic decay of tau-lepton

- Hadronic decays of tau: 65%
- Reconstruction seeded by anti-kt jets(R=0.4)
 - * $p_T > 10 \text{ GeV}, |\eta| < 2.5$
 - calibrated 3D topological clusters
 - good quality tracks with p_T > 1 GeV
 - discriminating variables
 - combined information from calorimeter and tracking
 - input to multi-variate algorithms

Topological clustering

phi

Hadronic decay of tau-lepton

	Decay properties of tau		Detector information used
	Collimated decay products	N	Jet width in tracker and calorimeter
	Leading charged hadron	Discrimination against Jets	Leading track
	No gluon radiation		Isolation
	Low invariant mass		Invariant mass of tracks and clusters
	Lifetime	1	Impact parameter, secondary vertex
	EM energy fraction different from electrons		Longitudinal position of energy deposits
е	EM component from π ⁰		LAr strip
	Less transition radiation than electrons		TRT
	Energy weighted calorimeter rac	dius provides	Ratio of high threshold to low threshold hits in TRT for leading track provides discrimination against electrons
	$\begin{array}{c} 0.16 \\ 0.16 \\ 0.14 \\ 0.12 \\ 0.12 \\ 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.02 \\ 0.04 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.$	Preliminary	0.25 $Z \rightarrow \tau \tau$ $p_{T} > 20 \text{ GeV}$ 0.2 0.25 $Z \rightarrow ee$ ATLAS Preliminary 0.15 0.1
	νο 0.05 0.1 0.15 0.2 0.25 0. Frc	3 0.35 0.4 R _{Cal}	⁰ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 _{f_{нт} 86}

Jets

- Definition (experimental point of view): bunch of particles generated by hadronisation of a common otherwise confined source
 - Quark-, gluon fragmentation
- Signature
 - energy deposit in EM and hadronic calorimeters
 - Several tracks in the inner detector
- Calorimeter energy measurement
 - Gets more precise with increasing particle energy
 - $\boldsymbol{\ast}$ Gives good energy measure for all particles except $\boldsymbol{\mu}\text{'s}$ and $\boldsymbol{\nu}\text{'s}$
 - Does not work well for low energies

Particles have to reach calorimeter, noise in readout

Jet Reconstruction and Calibration

Contributions to the jet signal:

Try to address reconstruction and calibration through different levels of factorisation

Theoretical requirement to jet algorithm choices

- Infrared safety
 - Adding or removing soft particles should not change the result of jet clustering
- Collinear safety
 - Splitting of large p_T particle into two collinear particles should not affect the jet finding
- Invariance under boost
 - Same jets in lab frame of reference as in collision frame
- Order independence
 - Same jet from partons, particles, detector signals
- Many jet algorithms don't fulfill above requirements!

infrared sensitivity (artificial split in absence of soft gluon radiation)

collinear sensitivity (1) (signal split into two towers below threshold)

collinear sensitivity (2) (sensitive to E_t ordering of seeds)

Types of jet reconstruction algorithms: cone

Example: iterative cone algorithms

- Find particle with largest p_T above a seed threshold
- Draw a cone of fixed size around this particle

 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \varphi^2} < R_{\rm cone}$

- Collect all other particles in cone and recalculate cone directions
- Take next particle from list if above p_T seed threshold
- Repeat procedure and find next jet candidate
- Continue until no more jet above threshold can be constructed
- Check for overlaps between jets
 - Add lower p_T jet to higher p_T jet if sum of particle p_T in overlap is above a certain fraction of the lower p_T jet (merge)
 - Else remove overlapping particles from higher p_T jet and add to lower p_T jet (split)
- All surviving jet candidates are the final jets
- Different varieties: (iterative) fixed cone, seedless cone, midpoint...

Types of jet reconstruction algo.: Recursive Recombination

- Motivated by gluon splitting function
- Classic procedure
 - Calculate all distances d_{ji} for list of particles / cell energies / jet candidates

- Combine particles if relative p_T is smaller than p_T of more energetic particle
- Remove i and j from list
- Recalculate all distances, continue until all particles are removed or called a jet
- Alternatives
 - Cambridge / Aachen (n=0)

Uses angular distances only

- Anti-kT (n= -1, preferred ATLAS algo.)
 - First cluster high E with high E and high E with low E particles
 - This keeps jets nicely round

Missing Transverse Momentum

- Missing energy is not a good quantity in a hadron collider as much energy from the proton remnants are lost near the beampipe
- Missing transverse momentum (E_T) much better quantity
 - Measure of the loss of energy due to neutrinos
- Definition:

$$\mathbf{E}_T = -\sum_i E_T^i \hat{n}_i = -\sum_{all \text{ visible}} \vec{E}_T$$

- Missing E_T reconstruction algorithms:
 - Use all calorimeter cells or energy clusters above a certain energy threshold
 - Use all reconstructed particles w-r-t their calorimeter and track measurement.
 - Use reconstructed/calibrated particles above a p_T threshold in addition to all remaining calorimeter clusters
 - Use reconstructed particles above a p_T threshold in addition to all remaining reconstructed tracks

Missing Transverse Momentum

- But it's not that easy...
 - Electronic noise might bias missing E_T measurement
 - Particles might have ended in cracks / insensitive regions
 - Dead calorimeter cells
 - Effects from beamhalo events
- Corrections needed to calorimeter missing E_T
 - Correction for muons. Recall: muons are MIPs
 - Correct for known leakage effects (cracks etc)
 - Particle type dependent corrections
 - Each cell contributes to missing E_T according to the final calibration of the reconstructed object (e, γ , μ , jet...)
- Pile-up effects will need to be corrected for.
 - It is a erious problem at the LHC.
 - ***** Distort smissing E_T scale and direction measurement, worsen its resolution,
 - Increase backgrounds from processes with fake or low missing E_T

Missing Transverse Momentum

before pile-up suppression

Missing E_T resolution improves with pile-up suppression. Several methods been developed using tracks or energy subtraction from calorimeter clusters

Calorimeters: Hadronic Showers

- Much more complex than EM showers
 - visible EM O(50%)

 \bullet e[±], γ , $\pi^{o} \rightarrow \gamma \gamma$

- visible non-EM O(25%)
 - \clubsuit ionization of $\pi^{\pm},\,p,\,\mu^{\pm}$
- invisible O(25%)
 - nuclear break-upnuclear excitation
- escaped O(2%)
- Only part of the visible energy is measured (e.g. some energy lost in absorber in sampling calorimeter)
 - calibration tries to correct for it

Yμ