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Introduction @)

e The combustion of fossil fuels releases emissions into the air which causes pollution.

cations o W. R. Grove in 1839 [1], using the knowledge of electrolysis discovered the fuel cell.
ASP’
W‘indl?(;ck
Namibia oFuel cells are considered as a prime candidate for the ”green” energy production : clean, quiet.
NKUIATE
H }RRIS
SoP eFuel cells are electrochemical devices, that use chemical energy from a fuel (hydrogen,
R methanol, etc.) and an oxidant (air or oxygen) and PLATINUM catalyst to produce electrical
energy.

The

Chemistr
R o The 'reforming’ fuels such as natural gas or methanol, introduces CO into the hydrogen gas,
which poisons the platinum catalyst.

oThe electrochemical oxidation of CO on Pt is an electrolytic reaction through which the CO is
removed from the Pt surface.

o SOLITARY waves were first observed in this process in 1992 by Rotermund et . al [2] using
PEEM spectroscopy.

Complex

Ginzburg-La
(CGL)

quation o In 2005, Bauer et.al experimentally observed dissipative SOLITONS in the electrooxidation
of CO on Pt using FTIR spectroscopy in the ATR configuration.
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o Analytical proof of bright solitons in the electrooxidation of CO on Platinum electrode
observed experimentally.
oThe perturbation analysis ; reductive perturbation and multiple scale expansion.
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FIGURE: (a.) Fuel cell. (b) Schematic diagram .(c) Experimental observation of soliton collision of CO
coverage [2].

| Anode : H, — 2H"+2¢, (1)
1 _
Cathode : 502 —  2H" +2¢” — H,O0. )
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The Chemistry of electrooxidation @

e Chemistry of electrooxidation

eMean field Langmuir—Hindshelwood (L-H) mechanism is use to describe the reaction.

o Simulations are usually based on three elementary reaction steps ; adsorption of CO,
oxidative adsorption of water and reaction of adsorbed CO and OH molecules

ads
Pt— CO; -2 Pt - CO, 3)
Pt+HyO=Pt—OH+H" +e, 4)
Pt—CO+Pi—O0H L5 0Pt + CO» + H' +e. )

oIn Souradip et al. [4] it was shown that, the additional competitive adsorption of anions such
as CI~, blocks free surface sites for OH and CO, and may induce oscillations ;

X 4% = Xogs +€ . ©)

eAs long as the OH coverage remains very small, the reaction rate can be expressed without
taking explicitly the coverage of OH into account, Zhang et al. [5].
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The Strasser—Eiswirth—Ert] (KEE) model @

oThe temporal evolution of the chemical subsystem, consisting of ®¢¢, the CO coverage of the
electrode, and @, the anion coverage is then given by [4]

6;@(‘0 = V‘édg — Y+ Doﬁm@)co,
6,@){ = V%ds = V?(m A D06m®x,
Coppr, = —SitF V™ + (45 =) — 00, dprl=we. @)

where the corresponding adsorption, desorption and reaction rates are given by the following
expressions :

Vel = ke 0,(0.99 — Oco — BOx),
B cpDy
G = 3 k95501 — @) — Oy)
0 + Siok(ip0(1 = Oco — Ox)
yreac — krmL(l —Oco — Ox)Oco exp (QEQBDL) B
] F
V;i(es — k;](es®x exp [(a - 1)E¢DL:| s
Yl o sy R (0.99 -®co - @T)fu) exp (aﬁqm)- ®)
X
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(ASP) elet Ocp = U, Ox =V, ¢p; = W and the equations reduce to
‘Windhoek
Namibia _

M09-U-V) .,

40 =—— ~ K1 -U-V)U + DoU,y, 9
Vx: il{llx’?ll\‘l d Do+B(1-U-YV) x ( YU exp(afW) 0 Uxx )

SOP

Vi = ¥(0.99 — U - V/V"™) exp(afW) — KV exp(gW) + Do Vi, (10)

Wi

~y1(1 = U = V)U exp(afW) = 72(0.99 — U = V/V"*) exp(afW)
+  y3Vexp(@W) — o0 Wl=we, (11
model

ewhere @ = k‘é‘g(;bD,ﬁ = Srotk‘é‘gé,’)’ — k;z{dxCXsR’f = F/RT,g = (a — 1)F/RT,

. ds 1ot F
28101 FK"e%¢ StotF k™ StotF
= Sl — yy =y y3 = X ——,01 = ¢

71
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The model . @)

eSince the coverages are very small, we can take the Binomial expansion of the quotient.

African
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ASP . .
W'in;.,‘,'ck o We assume that the coverages are very small and that the electrode potential is close to the

Wi strictly potentiostatic case (W << 1) and hence exp(W) ~ 1.
NKUIATE
HARRIS

SOP o We neglect the surface diffusion of adsorbed CO, since it is small compared to the lateral
diffusion of the bulk CO [4].

eWe consider the homogeneous case of the migration coupling, where it vary linearly with the
electrode potential.

The

Strasser—Eis’

(SEE) e Using these assumptions and putting the equation in the Linard, we have

model

Vie = QoVix = (ko + k1 V + ko VAV, = Qg + Qo)V2 = (AgV + LoV Ve = (x2 + x3)VEA — 10
—mV =mV2 =3V = (Mg = AsV)Vi Vi — @ Vi V2 + @ V2V + TV + @ V2, + DoVaxxt = 0,
S W + (@3 + 7V = (1o + 11 V)Var = 1 VE + poViVie = TV =11V = 19
(CGL)
o1(W = Up) - D3V}, =0,
Station U 0.99 — BV —arV; + Do V. (12)

olitar
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Derivation of Korteweg de-Vries (KdV) equation

Reductive perturbation method

oWe seek for weak amplitude wave, by applying the reductive perturbation technique.

eConstraint : nonlinearity balances dispersion.

o At the order 0(63/2), we have ;

—koVr + kiugVVs + DougVsss = QoVss + ug(@o + A2)VsVss, (13)
e where Q) = €!/2Q, Ay = Az /€, @y = o€
e After applying the scaling on this equation, we have the perturbed kdV given by

Ve —6V'V + Vige = ¥Vee — BV Vee a4

KD

where 7 = "OkioT, e=—VkS, V=-6DyV".
0
oThis equation is known as the Modified kdV—Burger (MkdVB) equation.
v
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Derivation of KdV . @

oThe unperturbed equation is given by ;

as> VI —6V'V.+ V., =0. (15)
‘Windhoek
Namibia oThis equation has a one soliton solution given by Kivshar et al. [5] which has the form
NKUIATE

HARRIS

sop V' = —2k%sech’z, (16)

where z = k(¢ — ¢) and { is the phase.
o Then, using the perturbation theory based on the inverse scattering transform that predicts the
temporal evolution of the amplitude k, and the phase ¢ we have

dk 1 2yk

- , 17
% 2 a7)
[/ 5 1128k
Derivation dr 4k 105 ° {18

of Korteweg
de-Vries

) e Solving these, we see that k(1) = Ag exp(—a7) which implies that the dissipation brings about
equation the exponential decay of the amplitude.

eAlso, the phase £(7) = 4k*T + okt.
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ASP e Substituting these expression in the unperturbed solution, it then become
‘Windhoek
Namibia P 2 2 2
CKUIAT V'(e,7) = —2a; exp(=2art)sech [ao exp(—ar) (a — day exp(=2at)T + ago exp(—m')‘r)] . (19
HARRIS

SOP In terms of the original variable, it is given by
Ox = Ae M sech?(X), (20)

ewhere X = age ™ (—gx + (p + quo)t — 4e~) and A = 12ayD;.

... ®From the coupling equation, the CO coverage is given by

0.99 — BrAe M sech®(X) — 2AdrAe Y sech(X) — 2agAdcAe Y sech? (X)tanh(X)

Oco

Derivation

i +  8AAe Msech® (X)tanh(X) + 4Drq*azAe™* M sech® (X)tanh*(X)

de-Vries
(KdV)
equation

4Dzaéq2Ae’“’ sech*(X). 21
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FIGURE: CO and Anion coverage for the KdV-Burger equation :c = 100, = 0.005,¢ = 5, @ = 0.005
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Complex Ginzburg—Landau (CGL) equation @

e expansion method

oThis is a perturbation technique in which, the wavelength of periodic oscillations of the carrier
wave is comparable to the envelope width, the latter looks like it is breathing [6].

eConstraint : nonlinearity and dispersion are not balanced.

eIn order to determine the order of the different terms, we introduce the variable V = €¢ and
W = ep.

eWe suppose that Dy is perturbed to the order 2. This is due to the roughness of the anode
which increases the process of reaction and the equations become

¢ = Qubu — EDodrn — (ko + k19 + ED)pr — €(Qs + €Qod)p; — (€Aod + € €0¢ )P
- €2+ ex3d)br —0/€ — M — end’ — E€n30° — (A2 — €N3P) Py
- woezqﬁ,q)f.x + 62w1¢,2¢xx + E3F¢,3 + ezwqﬁix =0, 22)

@+ (T3 + enud)py — (Mo + €M P)bry — €M + €D0D1Pxy — €T27 —T1P — T/
+ o (W-=Uy) - eD%v_,Z(x =0. (23)
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eWe now look for modulated solution of the form

¢ = AX1, T1, X2, T2)e" + c.c + e[CX1, T1, Xa, To) + DXy, T1, Xa, T2)e*] + c.c + O(€),  (24)

¢ = F(X1,T1, X2, T2)e + c.c + e[GX1, Ty, X, To) + H(X1, T1, Xa, T2)e*] + c.c + O(€?).  (25)

virth—Ert]

Complex
Ginzburg-La
(CGL)
equation
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equation

Multiple scale expansion

e At the order eO, the annihilation of terms in e”’,gives the dispersion relation of linear waves of

the system.

a)2 = onz +m

1435

1425,

1415

FIGURE: The dispersion relation of the reaction pulse

Q= 0.008,7; = 2.

(26)
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Multiple scale expansion @
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o At the order €', the cancellation of terms in e gives the solvability condition

; 0A 0A
cations pa— Vgi
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=0. 27)

NKULALL e At the order €2,the cancellation of terms in ¢ and using the transformation &; = X; — V,T; and
HARRIS 7; = T; yields
Ned
A A R
oduction i— + P— + QIAPA = i—A. 28
L Y OlA| iz (28)

oThis equation shows that, the evolution of modulated waves in this flow cell model is
described by the Complex Ginzburg-Landau equation.

ewhere the nonlinearity and dispersion coefficients Q is complex while R and P are respectively

. = = G . .
real and are given by O = R — iF' and R = —, where the expressions of the coefficients are
)

_ Qy -V, _ * — wk — 2k
! G = ko—-Duwk, pP= u, F= M’ (29)
Complex 2w 2
Ginzburg—La 6 5
Lif',t'on B 3[0402 - 3173 — Qow 3y3 — @] — 3wg + %
R = L, (30)

Station 2w
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Stationary solitary wave solution @

eWe look for a solution of the form A(7y, &) = B(¢ e~ w2 using the method in Soto-Crespo et

s al [3], we have our solution in the original reference frame to be

ASP)

Windl?u.ck n

el Oy = Nsech(Z1)cos(Zo) — 2 N2sech*(Zy)cos*(Z2), 31

NKUIATE m

HARRIS
Ned

where Z; = e \B(x —xg), Zo = <D+kx—6wt,N=25,[§ and M = (k + @) with b =V, + €V,

and 6 = 1 + €2
eSimilarly,
—(w2‘1'3 +7)
irth épL = TNsech(Zl)cos(Zz)
4
+ ZEZ[Msechz(Zl Yanh(Z1)cosQD — 2wtr)cos(20)
naw
+ (1 - mw? — Z—Z(mwz +1))cos(26) + O wk>posin(26)
1
v Borsecr in(20)(1 + [Btanh(Z,)sin(2® — 2 32
ndan P sech”(Zy)sin(20)(1 + +/Btanh(Z)sin(2P — 2wT>))]. 32)
.

Stationary
solitary
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Stationary solitary wave solution @

From the coupling equation, we have

Oco

0.99 — Nsech(Z1)cos(Z2)[Ba + @rebtanh(Zy)] + "f]ﬁ 2 N2sech?(Z))cos*(Zy)

2
@N(D, — 6w)sech(Z))[sin(Za) — 212 Nsin(2Z)] + D2[Be2 Nsech’(Zy )cos(Za)
n
€ Nsech(Zy)tanh(Zy )cos*(Zy) + (1 — e \[B)Msech(Z, Ytanh(Zy)sin(Zy)
2
N®sech(Zy ) (sin(Zy) — %sin(ZZz)) + Mzsech(Zl)(%Ncos(ZZQ) — cos(Zp))
2 1

28em = N2sech?(Zy)cos®(Zy)(2tanh(Zy) — sech(Zy))
m

2

St LE N2 Mtanh(Zy)sech (Z )sin(2Za)
m

\/an N2Mtanh(Zl )sech(Zy)sin(27,)]. (33)
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nda FIGURE: CO and Anion coverage for the CGL equation :€ = 0.1,k = 0.003,xo = 0.03,6 = 0.4, Q = 0.005
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oWe have analytically proven that, the reaction pulses in the electrooxidation process are
solitons, a conjecture made by Krischer et al.

e We have considered the two different configurations of our system.

oWe were able to show that this solitons are dissipative using the perturbation method.

eWe intend to study the backfiring effect observed experimental, by doing collision studies.
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