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Definition of Brownians Motors;
transport properties across biology membranes,
superionic conductors,weakly pinned charged-density-wave
condensates,
submonolayer films adsorbed on crystalline substrate,
Josephson junctions,

To study the diffusion mechanism of mobile particles
through the ionic solids, we suppose that they are as
system of NNN Brownian particles submerged in a periodic
potential,

The deformed substrate can represent a substrat which
have abnormalities and defects, conformational changes;
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(a) (b) (c)

Figure: (a) Diagram illustrating motility of kinesin, (b) Microtubules
and the crystallographic structure of the human kinesin motor.

The environment are well described by the following Langevin
equation
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mẍ + γẋ = −dV (x , t ; r)
dx

+
√

2γKBTε(t), (1)

m represents the mass of the Brownian particle,
γ is the friction coefficient,
The zero-mean and the δ-correlated Gaussian white noise,
ε(t), meaning that < ε(t)ε(s) > = δ(t − s), models the
influence of the temperature T on the system
D = γKT , where K is the Boltzmann constant represents
the diffusion coefficient also known as the noise intensity,
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V (x , t ; r) =
(

(1 + r)2(1− cos(x − ωt))
(1− r)2 + 2r(1− cos(x − ωt))

− 1
)

ω represents the travelling potential

|r | < 1 represents the
deformation parameter,
r = 0, the potential
reduces to a sinusoidal
shape,
r < 0 it provides broad
wells separated by narrow
barriers,
r > 0 it provides deep
narrow wells separated by
broad flat barriers
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The dynamic of system is described by the corresponding
Fokker-Planck equation

∂

∂t
P(x , v , t) = LF P(x , v , t), (2)

where

LF = −v
∂

∂x
+

(
∂

∂v

)(
V ′(x , t ; r) + γv

)
+ D2 ∂

2

∂v2 . (3)
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Overdamped case (m = 0)
Model the orientation of molecular motor’s internal electric
dipole in order to describe the nature of interaction
between the motor and the filaments;

Applying the following periodic boundary condition and
normalization condition,

P(x + 2π, t) = P(x , t),
2π∫
0

P(x , t) = 1,

P(x−ωt) =
1
Z

2π∫
0

dα exp
(

V (x + α− ωt ; r)− V (x − ωt ; r) + ωα

D

)
,

(4)
< v >= ω + 2πC, (5)
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C =

D
(

1− exp(
2πω
D

)

)
Z

, (6)

Z =

2π∫
0

dα

2π∫
0

dx exp
(

V (x + α; r)− V (x ; r) + αω

D

)
. (7)
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Underdamped case (m 6= 0)
Driven plasma waves, known to accelerate classical
charged particles trapped by a perpendicular propagating
electrostatic waves

P(x , v , t) =
∞∑

n=0

Cn(x , t)ψn(v), (8)

Cn(x , t), are the expansion coefficients and ψn(v), the hermite
function. Where

∂C
∂t

= −αR
∂C
∂x

+ SC, (9)
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where R and S are (N + 1)× (N + 1) matrices given by

R =


0 α1
α1 0 α2

. . . . . . . . .
αN αN

 (10)

and

S =


0 0 · · · 0 · · ·

−
√

2
α A −γ 0 · · ·
0 − 2

αA −2γ 0 · · ·
0 0 −

√
6

α A −3γ · · ·
...

. . . . . . . . . . . .

 (11)

with A = V ′(x , t ; r) and where αn =
√

n/2.
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Numerical result

For the numerical treatment in both cases, the average
velocity, the effective diffusion and the monte carlo error of
Eq.(1), are respectively given by

〈v〉 = lim
t→∞

〈x(t)〉
t

, (12)

Deff = lim
t→∞

〈
x(t)2〉− 〈x(t)〉2

2t
, (13)

σ =
1√
L

√〈
v2
〉
− 〈v〉2. (14)
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overdamped case (m = 0)

(a) (b)

Figure: (a) Average velocity of Brownian particles and the analytical
result for r=0,-0.5,0.5 as a function of the travelling potential ω, (b)
Schematic representation of effective diffusion of Brownian particle in
the overdamped regime as a function of the travelling speed ω for few
values of r .
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(c)

Figure: Monte Carlo error σ vs ω for different values of the shape
parameter r .
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underdamped case (m 6=0)

(a) (b)

Figure: (a)Representation of average velocity as a function of ω for
different values of the shape parameter r in underdamped case, (b)
plot of the effective diffusion Deff as a function of the travelling
potential speed ω for some values of shape parameter r (r = −0.5,
r = 0, r = −0.5).
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underdamped case (m 6=0)

Figure: Monte Carlo error representation of underdamped case

.
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underdamped case (m 6=0)

(a) (b)

Figure: (a)Distribution of the Brownian particle in deformable
potential for r = 0 at t = 1, (b) Distribution of the Brownian particle in
deformable potential for r = −0.5 at t = 2.
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underdamped case (m 6=0)

(c)

Figure: (c) Distribution of the Brownian particle in deformable
potential for r = 0.5 at t = 2. This case tends to split in several
modes.
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We show in both cases that the critical value of the
travelling potential speed ω for which the average velocity
of the Brownian motor is maximal, where unpinning occurs,
depends on the intensity of the noise, as previously shown,
but we find it is also a function of the shape.
In underdamped case, one note a giant enhancement
diffusion with respect to the overdamped case.
For some shapes of the system, the distribution may
exhibit several modes.
Globally, biological systems are soft matter and their shape
and conformation may change due to external effects.
Thus modelling such systems it is necessary to take into
account their geometry.
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MERCI POUR VOTRE AIMABLE ATTENTION!!
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