Brownian motors in variable shape potential: overdamped versus underdamped

Kepnang Pebeu Maxime Fabrice

University of Yaounde I, Cameroon/African School of Physics (ASP), UNAM

July 13 2018

- Definition of Brownians Motors;
 - transport properties across biology membranes,
 - superionic conductors, weakly pinned charged-density-wave condensates,
 - submonolayer films adsorbed on crystalline substrate,
 - Josephson junctions,
- To study the diffusion mechanism of mobile particles through the ionic solids, we suppose that they are as system of N Brownian particles submerged in a periodic potential,
- The deformed substrate can represent a substrat which have abnormalities and defects, conformational changes;

Figure: (a) Diagram illustrating motility of kinesin, (b) Microtubules and the crystallographic structure of the human kinesin motor.

The environment are well described by the following Langevin equation

$$m\ddot{x} + \gamma \dot{x} = -\frac{dV(x,t;r)}{dx} + \sqrt{2\gamma K_B T}\varepsilon(t), \qquad (1)$$

- *m* represents the mass of the Brownian particle,
- γ is the friction coefficient,
- The zero-mean and the δ-correlated Gaussian white noise,
 ε(t), meaning that < ε(t)ε(s) > = δ(t − s), models the influence of the temperature T on the system
- $D = \gamma KT$, where K is the Boltzmann constant represents the diffusion coefficient also known as the noise intensity,

•
$$V(x,t;r) = \left(\frac{(1+r)^2(1-\cos(x-\omega t))}{(1-r)^2+2r(1-\cos(x-\omega t))}-1\right)$$

- ω represents the travelling potential
- |r| < 1 represents the deformation parameter,
- r = 0, the potential reduces to a sinusoidal shape,
- r < 0 it provides broad wells separated by narrow barriers,
- r > 0 it provides deep narrow wells separated by broad flat barriers

The dynamic of system is described by the corresponding Fokker-Planck equation

$$\frac{\partial}{\partial t} P(x, v, t) = L_F P(x, v, t), \qquad (2)$$

where

$$L_{F} = -\mathbf{v}\frac{\partial}{\partial x} + \left(\frac{\partial}{\partial \mathbf{v}}\right) \left(\mathbf{V}'(x,t;r) + \gamma \mathbf{v}\right) + D^{2}\frac{\partial^{2}}{\partial \mathbf{v}^{2}}.$$
 (3)

(5)

Overdamped case (*m* = **0)**

0

- Model the orientation of molecular motor's internal electric dipole in order to describe the nature of interaction between the motor and the filaments;
- Applying the following periodic boundary condition and normalization condition,

•
$$P(x + 2\pi, t) = P(x, t),$$

• $\int_{1}^{2\pi} P(x, t) = 1,$

$$P(x-\omega t) = \frac{1}{Z} \int_{0}^{2\pi} d\alpha \exp\left(\frac{V(x+\alpha-\omega t;r) - V(x-\omega t;r) + \omega\alpha}{D}\right)$$
(4)

 $< v > = \omega + 2\pi C$.

$$C = \frac{D\left(1 - \exp(\frac{2\pi\omega}{D})\right)}{Z}, \qquad (6)$$
$$Z = \int_{0}^{2\pi} d\alpha \int_{0}^{2\pi} dx \exp\left(\frac{V(x + \alpha; r) - V(x; r) + \alpha\omega}{D}\right). \qquad (7)$$

Underdamped case ($m \neq 0$)

 Driven plasma waves, known to accelerate classical charged particles trapped by a perpendicular propagating electrostatic waves

$$P(x,v,t) = \sum_{n=0}^{\infty} C_n(x,t)\psi_n(v), \qquad (8)$$

 $C_n(x, t)$, are the expansion coefficients and $\psi_n(v)$, the hermite function. Where

$$\frac{\partial \mathbf{C}}{\partial t} = -\alpha \mathbf{R} \frac{\partial \mathbf{C}}{\partial x} + \mathbf{SC}, \qquad (9)$$

where **R** and **S** are $(N + 1) \times (N + 1)$ matrices given by

$$\mathbf{R} = \begin{pmatrix} 0 & \alpha_1 & & \\ \alpha_1 & 0 & \alpha_2 & \\ & \ddots & \ddots & \ddots \\ & & \alpha_N & & \alpha_N \end{pmatrix}$$
(10)

and

with A

$$\mathbf{S} = \begin{pmatrix} 0 & 0 & \cdots & 0 & \cdots \\ -\frac{\sqrt{2}}{\alpha}A & -\gamma & 0 & \cdots \\ 0 & -\frac{2}{\alpha}A & -2\gamma & 0 & \cdots \\ 0 & 0 & -\frac{\sqrt{6}}{\alpha}A & -3\gamma & \cdots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$
(11)
= $V'(\mathbf{x}, t; t)$ and where $\alpha_{n} = \sqrt{n/2}$

 For the numerical treatment in both cases, the average velocity, the effective diffusion and the monte carlo error of Eq.(1), are respectively given by

$$\langle \mathbf{v} \rangle = \lim_{t \to \infty} \frac{\langle \mathbf{x}(t) \rangle}{t},$$
 (12)

$$D_{eff} = \lim_{t \to \infty} \frac{\langle x(t)^2 \rangle - \langle x(t) \rangle^2}{2t},$$
(13)

$$\sigma = \frac{1}{\sqrt{L}} \sqrt{\left\langle \mathbf{v}^2 \right\rangle - \left\langle \mathbf{v} \right\rangle^2}.$$
 (14)

Figure: (a) Average velocity of Brownian particles and the analytical result for r=0,-0.5,0.5 as a function of the travelling potential ω , (b) Schematic representation of effective diffusion of Brownian particle in the overdamped regime as a function of the travelling speed ω for few values of *r*.

Figure: (a)Representation of average velocity as a function of ω for different values of the shape parameter *r* in underdamped case, (b) plot of the effective diffusion D_{eff} as a function of the travelling potential speed ω for some values of shape parameter *r* (*r* = -0.5, r = 0, r = -0.5).

underdamped case ($m \neq 0$)

Figure: (a)Distribution of the Brownian particle in deformable potential for r = 0 at t = 1, (b) Distribution of the Brownian particle in deformable potential for r = -0.5 at t = 2.

Figure: (c) Distribution of the Brownian particle in deformable potential for r = 0.5 at t = 2. This case tends to split in several modes.

Conclusion

- We show in both cases that the critical value of the travelling potential speed ω for which the average velocity of the Brownian motor is maximal, where unpinning occurs, depends on the intensity of the noise, as previously shown, but we find it is also a function of the shape.
- In underdamped case, one note a giant enhancement diffusion with respect to the overdamped case.
- For some shapes of the system, the distribution may exhibit several modes.
- Globally, biological systems are soft matter and their shape and conformation may change due to external effects. Thus modelling such systems it is necessary to take into account their geometry.

Conclusion

MERCI POUR VOTRE AIMABLE ATTENTION!!