Accelerators for Nuclear Physics: ISOLDE Radioactive Ion Beam Facility

ASP18 – 5th African School of Fundamental Physics and Applications University of Namibia, and Namibia University of Science and Technology Windhoek, Namibia June 24 – July 14, 2018

Yacine Kadi CERN Experimental Area Group Geneva, Switzerland

Who Am I !

- Nuclear Engineering (UK & F)
- Nuclear Physics (CH, FEAT, TARC and nTOF, ISOLDE)
- Applied Physics (CERN)
- Academia (prof. SunKyunKwan Univ, Seoul, South Korea)

Who Am I !

- 1995 2004: Leading the simulation studies within the Energy Amplifier Conceptual Studies at CERN + TRADE (EUROTRANS FP6)
- 2005 2009: Leading the EURISOL-DS Multi-MW target project within FP6
- 2006 2009: Lead the AB/ATB-TD section overseeing the design, construction, testing, installation, operation and maintenance of LHC Beam Intercepting Devices
- 2009 2018: Leading the HIE-ISOLDE project at CERN which has as objective to increase the energy, intensity and quality of the radioactive ion beams at CERN-ISOLDE.
- 2018 …: Leading the CERN SPS North Experimental Area Upgrade (Hadron Physics, ATLAS/CMS beam test facility) + Coordinating CERN Material Test Facility (HiRadMat)

ISOLDE Facility

- ISOLDE is the CERN radioactive ion beam facility
- Oldest experiment at CERN (approved > 50 y ago)
- Provides low energy and **post-accelerated beams**
- Run by an international collaboration since 1965

> 500 Users from 100 Institutions, 50 experiments / year

ISOLDE brief History

(D

The 1963 Conference on High Energy Physics and Nuclear Structure Conclusions: Call for proposals in nuclear physics at CERN

2014

C. Rubbia (DG 1989-93)

June 1992 @ PSB

hental Physics and Applications, Wind

New Facility

CERN Research Infrastructures

5th African School of Fundamental Physics and Applications, Windhoek, Namibia, June 24 – July 14 2018 Page 6

Research with radioactive nuclides @ ISOLDE

- Decay spectroscopy (IDS, TAS,..)
- Coulomb excitation (MINIBALL)
- Transfer reactions (T-REX, Scattering)
- **Electromagnetic Properties** (COLLAPS, CRIS, NICOLE)
- Polarized Beta-NMR (VITO, COLLAPS)
- Masses (ISOLTRAP)
- Fundamental Interactions (WITCH)
- Applications:
 - Solide state (Collections)

Low Energy (30-60kV) Exps, <u>Post-accelerated Exps (10 MeV/u)</u> Machine elements

ISOLTRAP: principle

Determination of nuclear mass by measuring the cyclotron frequency:

Ions are trapped in crossed magnetic and electric field The frequency of their motion is proportional to their mass

5th African School of Fundamental Physics and Applications, Windhoek, Namibia, June 24 – July 14 2018 Page 9

CERN

Experimental set-up: T-REX & MINIRALI

December 8 - 10, 2010 | ISOLDE Workshop 2010 | Thorsten Kröll | TUD - Institut für Kernphysik | 11

TDPAC and Mössbauer Spectroscopy

Nuclear probes as sensors inside the nanoworld

- Nanopartices, Nanowires, nm-sized layered thin films, Nanocomposite Materials, Macromolecules
- Probe atoms at surfaces and interfaces

Nuclear probes as local magnetic field sensors

- Magnetic properties of clusters and nanocrystalline films
- Heavy fermion systems, Magnetoresistive materials
- Understanding magnetic hyperfine fields in solids

New online Emission Channeling

CERN

Radioactive Beam Production: Two Complementary Methods

The Proton Driver: LINAC 2

Proton Synchrotron Booster

Delivery of protons to ISOLDE Targets

RIB - Production reactions

Target – Ion-source matrix

•Container: 20 x 2 cm cylinder of Ta .Material: •Liquid La, Pb, Sn •Metal foil/powder Nb, Ti, Ta.. CaO, MgO •Oxides SiC, UC, ThC .Carbides .Ion-source .Surface •Plasma .Laser

•Fluorination CF4 or SF6

ISOLDE Target distribution 2008

Targets

Converter Target

Surface & plasma ionization

5th African School of Fundamental Physics and Applications, Windhoek, Namibia, June 24 – July 14 2018 Page 21 RC, 19 April 2011

5th A

5th African School of Fundamental Physics and Applications, Windhoek, Namibia, June 24 – July 14 2018 Page 22

K. Riisager / ISOLDE

н	ION SOURCE:												He				
Li	Be	Be + SURFACE – hot PLASMA cooled LASER										В	С	Ν	0	F	Ne
Na	Mg	Mg									ΑΙ	Si	Ρ	S	Cl	Ar	
К	Ca	Sc	ті	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge			Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро		Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	112	113	114	115			

CePrNdPmSmEuGdTbDyHoErTmYbLuThPaUNpPuAmCmBkCfEsFmMdNoLr

5th African School of Fundamental Physics and Applications, Windhoek, Namibia, June 24 – July 14 2018 Page 23

ISOLDE Experimental hall

Target Zone

GPS and HRS Separators

REX Post-Accelerator Linac

Miniball experiment

Key Technologies

5th African School of Fundamental Physics and Applications, Windhoek, Namibia, June 24 – July 14 2018 Page 30

HIE-ISOLDE Cryomodule # 1

Late August 2014: Assembly start

Assembly time of CM1: 30 weeks Baseline : 27 weeks

1 May 2015: Assembly completed

Mid-June 2015: Successfully cooled to 4.5k

2015 Commissioning Campaign

The 2015 Commissioning campaign achieved its goals

CM design choices validated

SC cavities performance were confirmed with beam

RF coupler problem identified (overheating)

Physics run started on 19th October, on

RF Coupler Heating

Coupler fully IN

Phase 1: Commissioning & Operation (2016)

Experiment	lsotope	HEBT	Destination	Energy [MeV/u]	Shifts
	¹¹⁰ Sn	VT01	Miniball Spectrometer	4.5	12
13-302	¹⁰⁸ Sn	VIOT	Minibali Spectronieter	4.5	12
IS-548	¹⁴² Xe	XT01	Miniball Spectrometer	4.5	30
	⁸⁰ Zn	VT01	Miniball Spectromotor	4.0	12
12-227	⁷⁸ Zn		willing an Spectrometer	4.0	12
IS-551	¹³² Sn	XT01	Miniball Spectrometer	5.5	18
IS-561	⁹ Li	XT02	Scattering Chamber	6.9 (7.2 req.)	15
IS-559	⁶⁶ Ni	XT01	Miniball Spectrometer	5.5	24

5th African School of Fundamental Physics and Applications, Windhoek, Namibia, June 24 – July 14 2018 Page 34

Phase 2: Installation & Commissioning (2017)

Phase 2: Completion (2018)

Physics at HIE-ISOLDE

THANK YOU

5th African School of Fundamental Physics and Applications, Windhoek, Namibia, June 24 – July 14 2018 Page 20

Determination of the atomic properties of Astatine

- Astatine rarest on Earth 29 g, (Guinness record)
- Identification of new atomic transitions
- Scan of ionizing laser: converging Rydberg levels allow precise determination of the IP

Determination of ionising potential

- Test of Atomic theory and Quantum Chemistry
- New beams / exotic decay modes: β-fission
- Potential interest for the development of ²¹¹At as a medical radioisotope

DOI 10.1038

5th African School of Fundamental Physics and Applications, Windhoek, Namibia, June 24 – July 14 2018 Page 39

Surprising simplicity in Cd-isotopes

- Study of neutron-rich Cd-isotopes up to N= 82
- ✓ Long leave isomers in ¹²⁷Cd and ¹²⁹Cd observed for first time
- ✓ Spherical shell model confirmed by linear behaviour of the 11/2 quadrupole moments

✓ Remarkably mantained beyond $h_{11/2}$.

Hyperfine-structure and Radioactive-decay studies francium isotopes (CRIS)

The high resolution of collinear laser spectroscopy + ion detection to probe the hyperfine structure of exotic isotopes.
Laser assisted nuclear decay spectroscopy on ^{204g,m1,m2}
K.T. Flanagan et al., PRL 111 (2013) 212501
K. Lynch, Accepted Phys. Rev X (March 2014)

(Price IOP 2013 & Springer 2014)

5th African School of Fundamental Physics and Applications, Windh bek, Namibia, June 24 – July 14 2018 Page 41

ISOLTRAP: High-precision mass of ⁸²Zn

Combined ISOLDE technical know-how: neutron-converter, quartz transfer line, laser ioni:

Nuclear structure: N=50 shell closure Astrophysics: r-process path Astrophysics: neutron star structure

0 0.5 1 cm

Its determination is important for modelling of the crust of neutron stars, PRL110 (2013) 04110

CERN Courier, 53, n 3, 2013

The Magic Number N=32

βp in halo ¹¹Be nuclei: Quasi-free n \rightarrow p decay

Aarhus-Goteborg-Madrid-Vienna ✓ βd observed in ⁶He & ¹¹Li halo nuclei decay directly to the continuum→ simpler mode in 1n-halo nuclei

✓ ¹¹Be best case to search for βp , $Q_{\beta p} = 280.7$ keV

✓ Expected B.R. 10⁻⁸ assuming direct decay

D. Baye & Tursonov, Phys. Lett. 696 (2011) 464

✓ Previous attempt gave unconclusive result with

BR = $2.5(25)x10^{-6}$; Borge et al., J. Phys G 40 (2013)

A 200 keV 10^{18} proton branch is challenging to detect \rightarrow Detect 10 Be daughter

- Contaminations measured to be negligible.
- B.R. = 8.4(6) x 10⁻⁶ Consistent with previous results
- New Resonance identified in ¹¹B

The new decay mode is consecuence of halo structure, peripheral decay of the neutron halo + intense super allowed transition near Q-value observed in other nuetron rich drip line nuclei. Riisager et al, Phys Lett. B732 (2014)305

Searching for pear-shaped nuclei at REX-ISOLE

CERN

First β-NMR in a liquid sample: Study of metal-lons in Biology

- Study of metal-ion interaction with biomolecules
- Probe nucleus: ³¹Mg⁺ -> spin 1/2, half-life 230 ms, ca. 5^{*}10⁵ ions
- Sample: ionic liquid (EMIM= 1-ethyl-3-Methyl-Imidazolium)
- Spin polarization via optical pumping with lasers from COLLAPS

