FCC-eh and LHeC Overview

B.Mellado

Univ. of the Witwatersrand & iThemba LABS

On behalf of the LHeC Study Group

Many thanks to N.Armesto, G.Azuelos, O.Bruening, M.D'ONofrio, O.Fischer, S.Forte, M.Klein, U.Klein, P.Kostka, M.Kumar, M.Kuze, C.Schwanenberger and M.Tanaka for slides

FCC week, Amsterdam, 09/04/18

EP Collisions @ FCC Week 2018

Jorge de Blas, Higgs in hh-eh-ee **Uta Klein, FCC-eh as a Higgs Facility** Monica D'Onofrio, BSM Physics in eh **Orhan Cakir, Top Quark Physics in eh Christian Schwanenberger, Top in hh-eh-ee** Peter Kostka, A Detector for eh **Max Klein, QCD measurements at FCC Oliver Bruening, Overview on FCC-eh design** John Osborne, Civil engineering **Roman Martin, Interaction region** Walid Kaabi, PERLE facility **Uta Klein, FCC-eh Summary**

ISSN 0954-3899

Journal of Physics G Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group

<u>arXiv:1206.2913</u>

July 20 12

iopscience.org/jphysg

IOP Publishing

arXiv:1211.4831 and 5102

CERN Referees

Ring Ring Design Kurt Huebner (CERN) Alexander N. Skrinsky (INP Novosibirsk) Ferdinand Willeke (BNL) Linac Ring Design Reinhard Brinkmann (DESY) Andy Wolski (Cockcroft) Kaoru Yokova (KEK) **Energy Recovery** Georg Hoffstaetter (Cornell) Ilan Ben Zvi (BNL) Magnets Neil Marks (Cockcroft) Martin Wilson (CERN) Interaction Region Daniel Pitzl (DESY) Mike Sullivan (SLAC) **Detector Design** Philippe Bloch (CERN) Roland Horisberger (PSI) **Installation and Infrastructure** Sylvain Weisz (CERN) New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangano (CERN) Precision QCD and Electroweak Guido Altarelli (Roma) Vladimir Chekelian (MPI Munich) Alan Martin (Durham) **Physics at High Parton Densities** Alfred Mueller (Columbia) Raju Venugopalan (BNL) Michele Arneodo (INFN Torino)

Published 600 pages conceptual design report (CDR) written by 150 authors from 60 Institutes. Reviewed by ECFA, NuPECC (long range plan), Referees invited by CERN. Published June 2012.

Layout

J.Osborne, et al

60 GeV ERL tangential to FCC-hh. IP: L for geological reasons. L= 1.5 10³⁴ Higher s, Q², 1/x 5

CDR: Default configuration, 60 GeV, 3 passes, 720 MHz, synchronous ep+pp, L_{ep} =10³³

Luminosity for LHeC, HE-LHeC and FCC

parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
$E_p \; [\text{TeV}]$	7	7	12.5	50
$E_e [{ m GeV}]$	60	60	60	60
$\sqrt{s} [\text{TeV}]$	1.3	1.3	1.7	3.5
bunch spacing [ns]	25	25	25	25
protons per bunch $[10^{11}]$	1.7	2.2	2.5	1
$\gamma \epsilon_p \; [\mu \mathrm{m}]$	3.7	2	2.5	2.2
electrons per bunch $[10^9]$	1	2.3	3.0	3.0
electron current [mA]	6.4	15	20	20
IP beta function β_p^* [cm]	10	7	10	15
hourglass factor H_{geom}	0.9	0.9	0.9	0.9
pinch factor H_{b-b}	1.3	1.3	1.3	1.3
proton filling H_{coll}	0.8	0.8	0.8	0.8
luminosity $[10^{33} cm^{-2} s^{-1}]$	1	8	12	15

Oliver Brüning¹, John Jowett¹, Max Klein², Dario Pellegrini¹, Daniel Schulte¹, Frank Zimmermann¹ Contains update on eA: $6x10^{32}$ in e-Pb for LHeC.

EDMS 17979910 | FCC-ACC-RPT-0012

Powerful ERL for Experiments

Collaboration of BINP, CERN, Daresbury/Liverpool, Jlab, Orsay INP+LAL CDR 2016/17, TDR 2018/19 ..

https://indico.cern.ch/event/680603/

ERL facility: high current and energy low energy nuclear, particle and astro-physics

PERLE at Orsay

PERLE at Orsay (LAL/INP) Collaboration: BINP, CERN, Daresbury/Liverpool, Jlab, Orsay

3 turns, 2 Linacs, 500 MeV, 20mA, 802 MHz, Energy Recovery Linac facility

-Demonstrator of ERL for ep at LHC/FCC -SCRF Beam based development facility -Low E electron and photon beam physics -High intensity: O(100) x ELI 5.5 x 24m² CDR to appear in J Phys G [arXiv:1705.08783] A.Bogacz

https://indico.cern.ch/event/698368/

Why PERLE [as seen from LHeC]?

FUNDAMENTAL MOTIVATION:

- Validation of key LHeC Design Choices
- Build up expertise in the design and operation for a facility with a fundamentally new operation mode:

ERLs are circular machines with tolerances and timing requirements similar to linear accelerators (no 'automatic' longitudinal phase stability, etc.)

Proof validity of fundamental design choices: Multi-turn recirculation (other existing ERLs have only 1-2 passages) Implications of high current operation (2 * 3 * [6mA – 25mA] → 30-150mA!!)

Verify and test machine and operation tolerances before designing a large scale facility

Tolerances in terms of field quality of the arc magnets and cavity alignment Required RF phase stability (RF power) and LLRF requirements Halo and beam loss tolerances

PERLE Magnets

70 dipoles 0.45-1.29 T

±20 mm aperture, I=200,300,400 mm

May be identical for hor+vert bend

7A/mm² (in grey area) water cooled

114 quadrupoles max 28T/m Common aperture of 40mm all arcs Two lengths: 100 and 150mm DC operated

F. Marhauser et al (Jlab) 1st 802 MHz Cavity

CERN-Jlab design, produced at Jefferson Laboratory November 2017 Goal: 16 MV/m, $Q_0 > 10^{10}$ operated in CW in the PERLE+LHeC ERLs, prototype also for FCC-ee

Initial 2K Test of 802 MHz Nb Cavity December 2017

High quality, CW: operation point at about 18 MV/m. Quench at 31 MV/m Rerinsing for field emission suppression, observed at higher gradients. Next: HOM adapter and cryomodule design – cavity production to proceed.

LHeC Detector Basic Layout

http://cern.ch/lhec CDR: "A Large Hadron Electron Collider at CERN" , LHeC Study Group, [arXiv:1206.2913], J. Phys. G: Nucl. Part. Phys. 39 (2012) 075001

"On the Relation of the LHeC and the LHC" [arXiv:1211.5102]

FCC-he Detector Basic Layout P.Kostka

Based on the LHeC design; Solenoid&Dipoles between Electromagnetic Calorimeter and Hadronic Calorimeter.

Installation Study to fit into LHC shutdown needs directed to IP2 Andrea Gaddi *et al*

Detector fits in L3 magnet support

LHeC INSTALLATION SCHEDULE

Modular structure

ACTIVITY	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
DETECTOR CONTRUCTION ON SITE TO START BEFORE LHC LONG SHUT-DOWN								
LHC LONG SHUTDOWN START (T0)								
COIL COMMISSIONING ON SURFACE								
ACTUAL DETECTOR DISMANTLING								
PREPARATION FOR LOWERING								
LOWERING TO CAVERN								
HCAL MODULES & CRYOSTAT								
CABLES & SERVICES								
BARREL MUON CHAMBERS								
ENDCAPS MUON CHAMBERS								
TRACKER & CALORIMETER PLUGS								
BEAMPIPE & MACHINE								
DETECTOR CHECK-OUT								
LHC LONG SHUTDOWN END (T0+24m)								

LHeC Physics Programme

CDR, arXiv:1211.4831 and 5102 http://cern.ch/lhec

QCD Discoveries	$\alpha_s < 0.12, q_{sea} \neq \overline{q}$, instanton, odderon, low x: (n0) saturation, $\overline{u} \neq \overline{d}$
Higgs	WW and ZZ production, $H \to b\overline{b}$, $H \to 4l$, CP eigenstate
Substructure	electromagnetic quark radius, e^* , ν^* , W ?, Z ?, top?, H ?
New and BSM Physics	leptoquarks, RPV SUSY, Higgs CP, contact interactions, GUT through α_s
Top Quark	top PDF, $xt = x\overline{t}$?, single top in DIS, anomalous top
Relations to LHC	SUSY, high x partons and high mass SUSY, Higgs, LQs, QCD, precision PDFs
Gluon Distribution	saturation, $x = 1, J/\psi, \Upsilon$, Pomeron, local spots?, F_L, F_2^c
Precision DIS	$\delta \alpha_s \simeq 0.1 \%, \delta M_c \simeq 3 \text{MeV}, v_{u,d}, a_{u,d} \text{ to } 2 - 3 \%, \sin^2 \Theta(\mu), F_L, F_2^b$
Parton Structure	Proton, Deuteron, Neutron, Ions, Photon
Quark Distributions	valence $10^{-4} \leq x \leq 1$, light sea, d/u , $s = \overline{s}$?, charm, beauty, top
QCD	N ³ LO, factorisation, resummation, emission, AdS/CFT, BFKL evolution
Deuteron	singlet evolution, light sea, hidden colour, neutron, diffraction-shadowing
Heavy Ions	initial QGP, nPDFs, hadronization inside media, black limit, saturation
Modified Partons	PDFs "independent" of fits, unintegrated, generalised, photonic, diffractive
HERA continuation	$F_L, xF_3, F_2^{\gamma Z}$, high x partons, α_s , nuclear structure,

Ultra high precision (detector, e-h redundancy)	- new insight
Maximum luminosity and much extended range	- rare, new effects
Deep relation to (HL-) LHC (precision+range)	- complementarity

Strong coupling 0.1%; Full unfolding of PDFs; Gluon: low x: saturation?, high x: HL LHC searches...

arXiv:1802.043317

Strong reduction of parton pdf uncertainties, with largeimpact on highx physics in pp

case	$\operatorname{cut}\left[Q^2 \left(\operatorname{GeV}^2\right)\right]$	uncertainty	relative precision (%)	
HERA only	$Q^2 > 3.5$	0.00224	1.94	Achieve
HERA+jets	$Q^{2} > 3.5$	0.00099	0.82	down to
LHeC only	$Q^2 > 3.5$	0.00020	0.17	0.1% err
LHeC+HERA	$Q^{2} > 3.5$	0.00013	0.11	in α _s
LHeC+HERA	$Q^{2} > 7.0$	0.00024	0.20	
LHeC+HERA	$Q^2 > 10.$	0.00030	0.26	21

1

error

High Precision for pp

Can achieve <0.5% precision in pdf uncertainty, thus removing this uncertainty from the prediction of the Higgs cross-section.

Reduce pdf error 2.8 MeV \rightarrow Remove PDF uncertainty on M_W LHC

Spacelike M_W to 10 MeV from ep \rightarrow Electroweak test at 0.01% !

eA Collisions

Extension of kinematic range of eN scattering by orders of magnitude in Q² and 1/x

Complementarity to AA and pA physics: initial state of QGP, hadronisation and mechanism of confinement, colective phenomena seen in AA, pA and pp

YEnterria arXiv0707.4182

eA: inclusive

 Large impact on nPDFs, possible to make a Pb fit without proton PDFs
 Large room for improvements: NC+CC at several energies, flavour decomposition,...

Direct Measurement of |Vtb|

C.Schwanenberger

including top-quark mass uncertainty
 o_{theo}: NLO PDF4LHC11
 NPPS205 (2010) 10, CPC191 (2015) 74
 including beam energy uncertainty

Takes advantage that tt production is suppressed in ep. FCC-eh with 2 ab⁻¹ would further improve the result significantly.

Top Quark Anomalous Couplings

C.Schwanenberger

Higgs in ep

- It is remarkable that VBF diagrams were calculated for lepton nucleon collisions before for pp!
- **Small theoretical uncertainties**
- Topological requirements effective in background suppression

□Large S/B w.r.t. pp, e.g. in h→bb expect S/B=3 At LHC replace lepton lines by quark lines but dominantly $gg \rightarrow H$

LHeC, a Higgs Facility

→ for first time a realistic option of an 1 ab⁻¹ ep collider (stronger e-source, stronger focussing magnets) and excellent performance of LHC (higher brightness of proton beam); ERL : 960 superconducting cavities (20 MV/m) and 9 km tunnel [arXiv:1211.5102, arXiv:1305.2090; EPS2013 talk by D. Schulte]

	LHeC Hig	ggs	$CC(e^-p)$	NC (e^-p)	$CC(e^+p)$	Ulti
v3- 1.3 iev	Polarisation		-0.8	-0.8	0	e-be
	Luminosi	ty $[ab^{-1}]$	1	1	0.1	and
→ need of	Cross Sec	tion [fb]	196	25	58	10 y
different	Decay	BrFraction	$N_{CC}^{H} e^{-}p$	$N_{NC}^{H} e^{-}p$	$N_{CC}^{H} e^{+}p$	oper
models :	$H \to b\overline{b}$	0.577	▲ 113 100	13 900	3 350	→ D
cc: 'sm-full'	$H \to c \overline{c}$	0.029 🚽	5 700	700	170	b T
	$H \to \tau^+ \tau$	- 0.063	12 350	1 600	370	ч
	$H \to \mu \mu$	0.00022	50	5	_	
	$H \rightarrow 4l$	0.00013	30	3	_	Lline
	$H \rightarrow 2l2\nu$	v 0.0106	2080	250	60	nige in fe
gg. vv: 'heft'	$H \rightarrow gg$	0.086	16 850	2 050	500	15 Ta
86/ FF	$H \to WW$	V = 0.215	42 100	$5\ 150$	1 250	like
	$H \rightarrow ZZ$	0.0264	$5\ 200$	600	150	time
	$H \to \gamma \gamma$	0.00228	450	60	15	dete
	$H \to Z\gamma$	0.00154	300	40	10	effic
Lite Klein Liere					·	squa

Ultimate polarised e-beam of <u>60 GeV</u> and LHC-p beams, 10 years of operation

 Decay to bb is dominating HFL decay modes :
 Higgs decay to cc is factor 20 less likely than Hbb times the ratio of detection efficienciessquared ! 28

Uta Klein, Higgs to HFL

Top Yukawa coupling

 $\nu_e e^-$

Introduce phase dependent top Yukawa coupling

$$\mathcal{L} = -i\frac{m_t}{m_t}\bar{t}\left[\cos\zeta_t + i\gamma_5\sin\zeta_t\right]t\,h$$

Enhancement of the crosssection as a function of phase

Observe/Exclude non-zero phase to better than 4σ . Measure coupling with 17% accuracy with zero phase ²⁹

Signal Strength of SM Higgs decay in ep

M+U.Klein, 6.3.18

Charged Currents: $ep \rightarrow vHX$ Neutral Currents: $ep \rightarrow eHX$

Σ br_i=0.99±0.01 precise reconstruction of full width from 7 most frequent decays (2% at LHeC, and 1% at LHeC+LHC). Charged currents only

 $E_e = 60 \text{ GeV}$ LHeC $E_p = 7 \text{ TeV}$ L=1ab⁻¹ HE-LHC $E_p = 14 \text{ TeV}$ L=2ab⁻¹ FCC: $E_p = 50 \text{ TeV}$ L=2ab⁻¹

SM Higgs Couplings, ĸ, with LHeC

LHeC: 60 GeV x 7 TeV. CLIC: 350 GeV [arXiv:1608.07538, "model dependent fit"]

SM Higgs Couplings, ĸ, with FCC-eh

M+U.Klein, 5.4.18

arXiv:1702.03426 Coleppa, Kumar^2, Mellado

NC+CC Analysis using overconstrained system of couplings

 $E_e = 60 \text{ GeV } L=2ab^{-1}$ HE-LHC $E_p = 14 \text{ TeV}$ FCC: $E_p = 50 \text{ TeV}$

Growing interest in BSM physics with ep

See talk by M.D'Onofrio

1	Acar, Y. C., Akay, A. N., Beser, S., Karadeniz, H., Kaya, U., Oner, B. B., & Sultansoy, S., FCC Based Lepton-Hadron and Photon-Hadron Colliders: Luminosity and Physics., http://arxiv.org/abs/1608.02190
	SUSY (general)
2	Han, C., Li, R., Pan, RQ., & Wang, K., Searching for the light Higgsinos at the CERN LHeC., http://arxiv.org/abs/1802.03679
3	S. Kuday, Resonant Production of Sbottom via RPV Couplings at the LHeC https://arxiv.org/abs/1304.2124
4	Hong-Tang, W., Ren-You, Z., Lei, G., Liang, H., Wen-Gan, M., Xiao-Peng, L., & Ting-Ting, W., Probe R-parity violating stop resonance at the LHeC, http://lanl.arxiv.org/abs/1107.4461
	Long-lived particles - SUSY and beyond
5	Curtin D. Deshoande K. Fischer O. & Zurita J. New Physics Opportunities for Long-Lived Particles at Electron-Proton Colliders. http://arxiv.org/abs/1712.07135
	heavy/sterile neutrinos
6	Duarte, L., Zapata, G., & Sampayo, O. A., Angular and polarization trails from effective interactions of Majorana neutrinos at the LHeC., http://arxiv.org/abs/1802.07620
7	Antusch, S., Cazzato, E., & Fischer, O. Sterlie , neutrino searches at future \$e^-e^+\$, \$pp\$, and \$e^-p\$ colliders,, http://arxiv.org/abs/1612.02728
8	Duarte, L., González-Sprinberg, G. A., & Sampayo, O. A., Majorana Neutrinos Production at LHeC in an Effective Approach, http://xxx.lanl.gov/abs/1412.1433
	anomalous couplings. Effective Lagrangian
9	Kuday, S., Saygin, H., Hos, I., & Cetin, F., Limits on Neutral Di-Boson and Di-Higgs Interactions for FCC-he Collider., http://arxiv.org/abs/1702.00185
10	Cakir, I. T., Cakir, O., Senol, A., & Tasci, A. T., Search for Anomalous WW/gamma and WWZ Couplings with Polarized \$e\$-Beam at the LHeC, Acta Physica Polonica B, 45(10), 1947 (2014) https://doi.org/10.55
	BSM Higgs:
11	Azuelos, G., Sun, H., & Wang, K., Search for Singly Charged Higgs in Vector Boson Scattering at the ep Colliders., http://arxiv.org/abs/1712.07505, see also K. Wang and H Sun: talk at Sept. 2017 workshop
12	Sun H, Luo X, Wei W, Liu T., Searching for the doubly-charged Higgs bosons in the Georgi-Machacek model at the ep colliders, Phys. Rev. D 96, 095003
	compositeness, contact interactions, excited/beaux fermions GUT
13	Zernecki er/liv/0809.2017. hep-ph/0104107
14	see also new limits from HERA: Zaus Collaboration, 1604 01280 and Zamacki, 1611 02825
15	Liu X-B. Search for single production of vector-like ton partners at the Large Hadron Electron Collider. http://arviv.org/abs/1704.02059
16	Lindner, M. Queiroz, E.S. Rodeiohann, W. & Yaguna, C. E. Left-right symmetry and lenton number violation at the Large Hadron electron Collider. Journal of High Energy Physics. 2016(6), 140. https://doi.org/
17	Mondal, S., & Rai, S. K., Polarized window for left-right symmetry and a right-handed neutrino at the Large Hadron-Electron Collider. Physical Review D, 93(1), 11702, (2016) https://doi.org/10.1103/PhysRevD.9
	ton quark ECNC and anomalous couplings (ton group)
40	top quark FCNC and anomalous couplings (top group)
10	http://arxiv.org/abs/1701.00552, Denizi H, Senor A, Himaz A, Cakir H, Karadeniz H, Cakir C, Top Quark Ford Couplings at luture circular hadron electron conders
20	http://arxiv.org/abs/1705.05419, Cakir IT, Vilmaz A, Danizli H, Sanol A, Karadaniz H, Cakir O, Brohing the Anomalous ECNIC Stalaamma\$ Countings at Large Hadron electron Collider
20	Samiento-Alvarado I. A. Bourae, A. O. & Larios, E. Analveis of the ton-quark charaed-current coupling at the LHeC, http://arxiv.org/abs/1412.6679
22	Dutta S. Goval A. Kumar M. & Mellado B. Measuring anomalous \$Wth\$ couplings at \$eA-n\$ collider. http://arxiv.org/abs/1307.1688
	exotic and miscellaneous
23	Acar, Y. C., Kaya, U., Oner, B. B., & Sultansoy, S., Color Octet Electron Search Potential of the FCC Based e-p Colliders, http://arxiv.org/abs/1605.08028
24	Hernandez-Sanchez, J., Das, S. P., Moretti, S., Rosado, A., & Xoxocotzi, R., Flavor violating signatures of neutral Higgs bosons at the LHeC, http://arxiv.org/abs/1509.05491
25	Das, S. P., Hernández-Sánchez, J., Rosado, A., & Xoxocotzi, R., Flavor signatures of lighter and heavier Higgs bosons within Two Higgs Doublet Model type III at the LHeC, http://arxiv.org/abs/1503.01464
26	Sahin, M., Resonant Production of Spin-3/2 Color Octet Electron at the LHeC. Acta Physica Polonica B, 45(9), 1811 (2014), https://doi.org/10.5506/APhysPolB.45.1811
27	Ren-You, Z., Hua, W., Liang, H., & Wen-Gan, M., Probing \$L\$-violating coupling via sbottom resonance production at the LHeC, http://lanl.arxiv.org/abs/1401.4266

Sterile Neutrinos at ep colliders

O.Fischer

Antusch et al. Int. J. Mod. Phys. A 32 (2017) no.14, 1750078

- ▶ Neutrino oscillations → type I seesaw
- Lowscale seesaw models allow large production xsections at colliders
- Present constraints: $|\theta_e| \le 10^{-3}$
- Searches via lepton-flavor violating final states: μ+jets, μτ + jets

- 1000 100 σ_{ep→Nj}/|θ_e|² [pb] 10 LHeC, Wa 0.100 FCC-eh. Wa LHeC, Wy 0 0 1 0 FCC-eh. Wv 0.001 0.01 0.50 1 0.050.10 M [TeV] 10⁻³ 10^{-5} ep 0 10⁻⁷ ee 10^{-9} 10⁻¹¹ 10 50 100 500 1000 M [GeV]
- Displaced vertex searches for heavy neutrino masses $< m_W$

Higgsino search at FCC-eh

Higgsino: Higgs partner in supersymmetry, difficult to probe at the LHC(C. Han *et al*, JHEP 1402 (2014) 049)

C. Han, R. Li, R. Pan, K. Wang, arXiv:1802.03679

See talk by

Outlook and Conclusions

□ Progress in devising concurrent ep/pp running

□Unique DIS facility at CERN with 10³⁴ instantaneous luminosity, opens new horizon for particle physics

PERLE collaboration formed, conceptual design

Demonstrator for ERL; envisioned at Orsay

□ First 802 MHz cavity produced

Passed tests and quality factors requirements

Complete design of FCC-eh detector

□ Complementarities of the ep/pp programs strongly benefits HL(HE)-LHC, FCC prospects:

Precise measurements and discoveries in QCD

Exploration of new nuclear substructure in new domains

Precise/complete determination of SM Higgs couplings

Unprecedented precision in top physics topics

Additional sensitivity to physics BSM

Additional slides

Why PERLE [as seen from LHeC]?

FUNDAMENTAL MOTIVATION:

- Validation of key LHeC Design Choices
- Build up expertise in the design and operation for a facility with a fundamentally new operation mode:

ERLs are circular machines with tolerances and timing requirements similar to linear accelerators (no 'automatic' longitudinal phase stability, etc.)

- Proof validity of fundamental design choices: Multi-turn recirculation (other existing ERLs have only 1-2 passages) Implications of high current operation (2 * 3 * [6mA – 25mA] → 30-150mA!!)
- Verify and test machine and operation tolerances before designing a large scale facility

Tolerances in terms of field quality of the arc magnets and cavity alignment Required RF phase stability (RF power) and LLRF requirements Halo and beam loss tolerances

PDFS AT THE LHEC

S.Forte

- UNCERTAINTIES DOWN TO PERCENT LEVEL IN WIDE KINEMATIC REGION
- WITH DEUTERON BEAMS, FULL LIGHT FLAVOR DECOMPOSITION
- THANKS TO HIGH ENERGY, $NC+CC \Rightarrow PRECISION$ STRANGENESS DETERMINATION

(A. Cooper-Sarkar & Voica Radescu, 2015)

PDF uncertainty on Higgs production at LHC will become negligible due to measurements a the LHeC₃₉

Impact of LHeC at small x

Small-x: inclusive

NLO DGLAP cannot accommodate F₂ and F₁ in presence of saturation

FCNC Branching Ratios at Colliders

C.Schwanenberger

C.Schwanenberger

Structure of HVV couplings

higgs + 2jets: VBF (LHC), higgs + jet + missing E_T (LHeC)

$$\Gamma_{\mu\nu}^{\rm SM} = -gM_V g_{\mu\nu}$$

$$\Gamma_{\mu\nu}^{\rm BSM}(p,q) = \frac{g}{M_V} [\lambda \left(p \cdot q g_{\mu\nu} - p_\nu q_\mu\right) + \lambda' \epsilon_{\mu\nu\rho\sigma} p^\rho q^\sigma]$$

Can consider azimuthal angle correlation between scattered neutrino and quark. Other observables can be used too.

ep process uniquely addresses the HWW vertex.

Model independent separation of HWW and HZZ coupling, unique capability of ep collisions, not available in pp and e^+e^- collisions

B.Biswal, R.Godbole, S.Kumar, B.M., S.Raychaudhuri Phys.Rev.Lett. 109 (2012) 261801

Compositeness	 4-fermion EFT: Lepton-quark compositeness scale Quark radius
Leptoquarks and RPV squark decay	 Accessible range largely excluded, but not completely Better measure of LQ characteristics, if they exist
Anomalous Triple Gauge Couplings	Comparable to LHC
Top FCNC couplings	• couplings – great potential wrt HL-LHC
Vector-like leptons, heavy/excited leptons, bileptons, higher isospin lepton multiplets	 No constraints on VLL, so far, at LHC Extend sensitivity to for lower masses
Heavy neutrinos, Majorana neutrinos, sterile neutrinos	 Symmetry-protected see-saw model LHeC reach similar or better than HL-LHC
SUSY EW: compressed scenario, Higgsino, (dark sector)	 Long-lived neutral particles Disappearing tracks – low background, compensate the low signal production rate
Anomalous Quartic Gauge Couplings	Better control on background: no gluon exchange diagrams (mostly FCC?)
extended Higgs sector: higher isospin multiplet	• Singly- and doubly- charged higgs by VBF (mostly FCC) 46

Sterile Neutrinos at ep colliders

Neutrino oscillations are evidence for non-zero m_ν.

O.Fischer

- Lowscale type I seesaw with sterile neutrinos \rightarrow heavy neutrino mass eigenstates with $M \sim v_{\rm EW}$
- ▶ Neutrino mixing $|\theta_{\alpha}|, \alpha = e, \mu, \tau \Rightarrow$ Weak current production.
- ▶ Present constraints: $|\theta_e| \le 10^{-3} \Rightarrow$ sizable cross sections at ep.

Antusch, Fischer; JHEP 1410 (2014) 094

O.Fischer

- Heavy neutrino-antineutrino oscillations
- Oscillation from Δm_{ν}^2 , can be \sim mm.

Lepton flavor violation:

• Unambiguous: μ +jets, τ +jets, $\mu\tau$ + jets

• Highest sensitivity to
$$|\theta_e \theta_\alpha|^2$$
, $\alpha = \mu, \tau$
Antusch *et al.*; Int. J. Mod. Phys. A 32 (2017) no.14, 17500

Effective vertices. Note the dependence on momenta in non-SM vertices. This induces significant impact on scattering kinematics.

$$\begin{split} \mathrm{i}\Gamma_{hhh} &= -\operatorname{6i}\nu\lambda g_{hhh}^{(1)} - \mathrm{i}g_{hhh}^{(2)}(p_{1}\cdot p_{2} + p_{2}\cdot p_{3} + p_{3}\cdot p_{1}), \\ \mathrm{i}\Gamma_{hW^{-}W^{+}} &= \mathrm{i}\left[\left\{\frac{g^{2}}{2}\nu + \frac{g}{m_{W}}g_{hWW}^{(1)}p_{2}\cdot p_{3} + \frac{g}{m_{W}}g_{hWW}^{(2)}(p_{2}^{2} + p_{3}^{2})\right\}\eta^{\mu_{2}\mu_{3}} \\ &\quad - \frac{g}{m_{W}}g_{hWW}^{(1)}p_{2}^{\mu_{3}}p_{3}^{\mu_{2}} - \frac{g}{m_{W}}g_{hWW}^{(2)}(p_{2}^{\mu_{2}}p_{2}^{\mu_{3}} + p_{3}^{\mu_{2}}p_{3}^{\mu_{3}}) \\ &\quad - \mathrm{i}\frac{g}{m_{W}}\tilde{g}_{hWW}\epsilon_{\mu_{2}\mu_{3}\mu\nu}p_{2}^{\mu}p_{3}^{\nu}\right], \\ \mathrm{i}\Gamma_{hhW^{-}W^{+}} &= \mathrm{i}\left[\left\{\frac{g^{2}}{2} + \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(1)}p_{3}\cdot p_{4} + \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(2)}(p_{3}^{2} + p_{4}^{2})\right\}\eta^{\mu_{3}\mu_{4}} \\ &\quad - \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(1)}p_{3}^{\mu_{4}}p_{4}^{\mu_{3}} - \frac{g^{2}}{m_{W}^{2}}g_{hhWW}^{(2)}(p_{3}^{\mu_{3}}p_{3}^{\mu_{4}} + p_{4}^{\mu_{3}}p_{4}^{\mu_{4}}) \\ &\quad - \mathrm{i}\frac{g^{2}}{m_{W}^{2}}\tilde{g}_{hhWW}\epsilon_{\mu_{3}\mu_{4}\mu\nu}p_{3}^{\mu}p_{4}^{\nu}\right]\cdot \mathbf{M}. \, \mathbf{Kumar \, et \, al. [1509.04016]} \end{split}$$

significance

