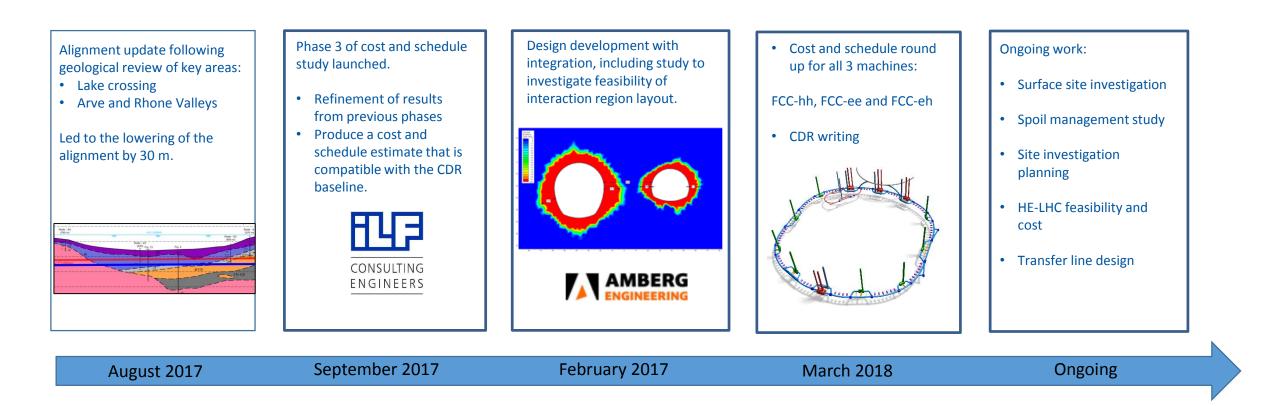


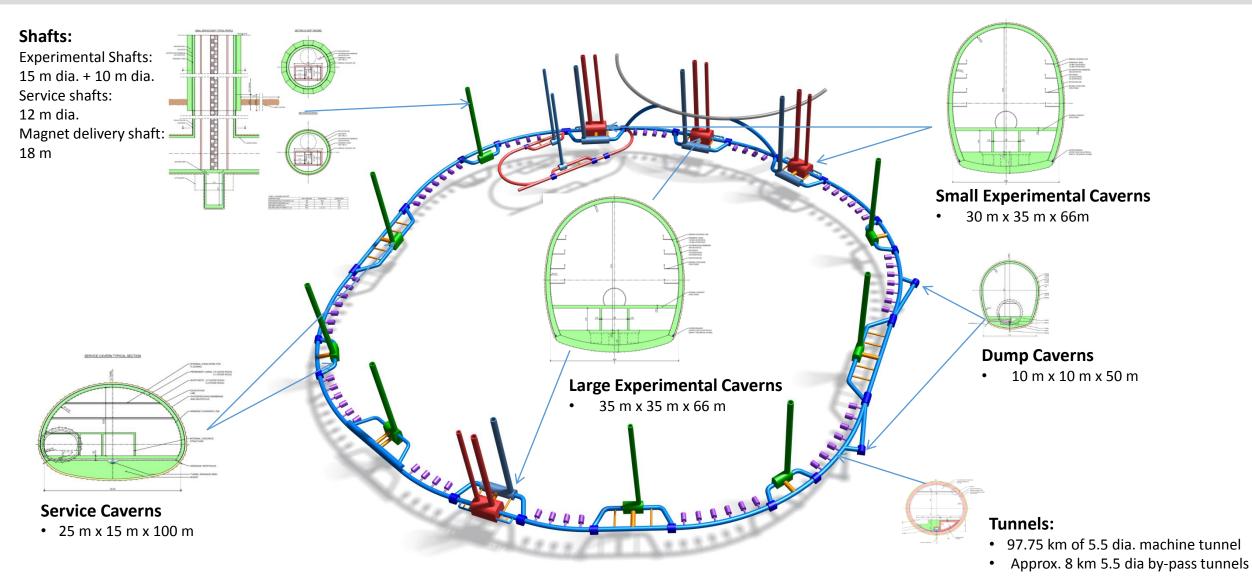
Civil Engineering Developments

FCC week 2018 Amsterdam

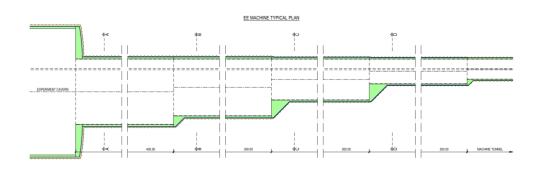
J. Osborne, J. Stanyard

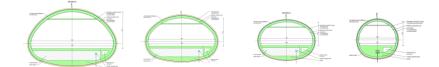


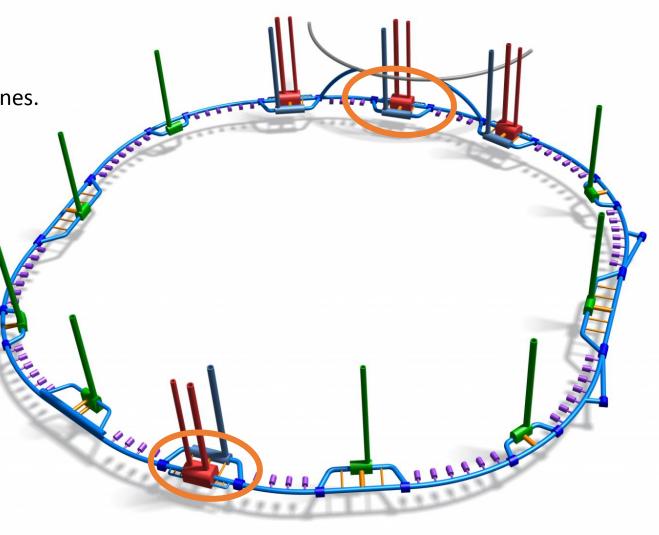
- Civil Engineering study progress since Berlin 2017
- Scope of Civil Engineering for:
 - FCC-hh
 - FCC-ee
 - FCC-eh
 - HE-LHC
- Alignment and Geology Update
- Update on the principal structures and position
- Typical tunnel cross-section
- Experimental cavern layout options
- Cost and Schedule Study
- Spoil Management Study
- Ground Investigation planning and Future Steps



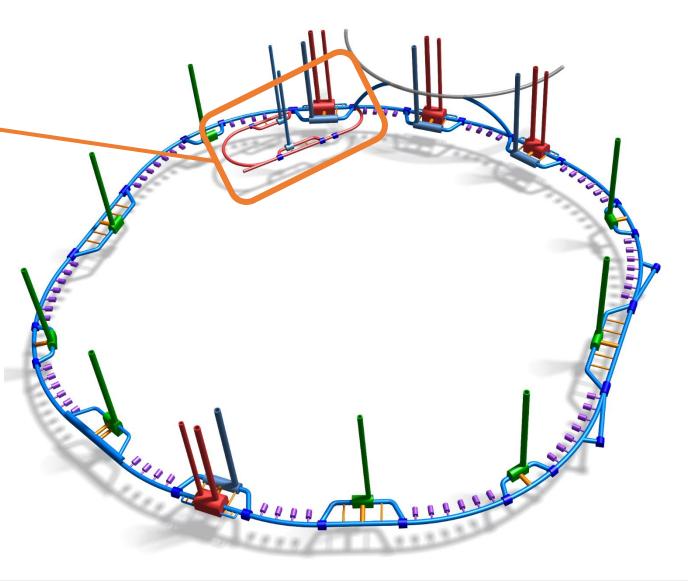
Scope of FCC-hh



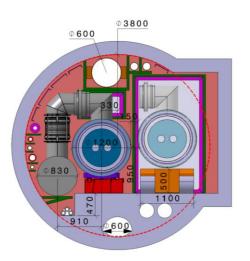




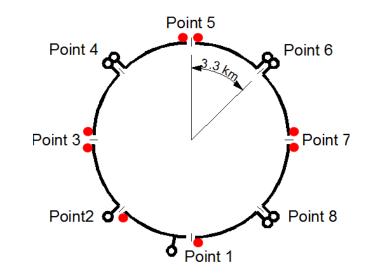
- Would be constructed at the same time as FCC-hh
- Infrastructure must be able to accommodate both machines.
- Enlargements required at experiment points A and G.



		1	
Structure	Quantities	Description	Applicable Section from the Baseline Design
Machine Tunnels	9,091m	5.5mID tunnel	Machine Tunnels
Service Shafts	2No	9mID shaft	9m shaft with same support of the 10mD Experiment Shafts
Service Caverns	2No	25m span, 50m long cavern	Service Cavern
Injection Cavern	1No	25m span, 50m long cavern	Service Cavern
Dump Cavern	1No	16.8m span, 90m long cavern	Junction Cavern
Junction Cavern with the FCC before Point L	1No	25m span, 50m long cavern	Service Cavern
Junction Cavern with the FCC after Point L	1No	25m span, 50m long cavern	Service Cavern
Junction Caverns between Machine Tunnels and FR Galleries	3No	16.8m span, 20m long (x2), 100m long (x1) caverns	Junction Cavern
FR Galleries	2No	5.5m span, 1070m long tunnel	Bypass Tunnel
Waveguide Connections	50No	1mD, 10m long	Klystron Connections
Connection Tunnel	4No	3m span	Connection Tunnels


Civil Engineering of FCC-eh – J.Osborne

Thursday 12th April 9:00, Berlage Zaal 1.9

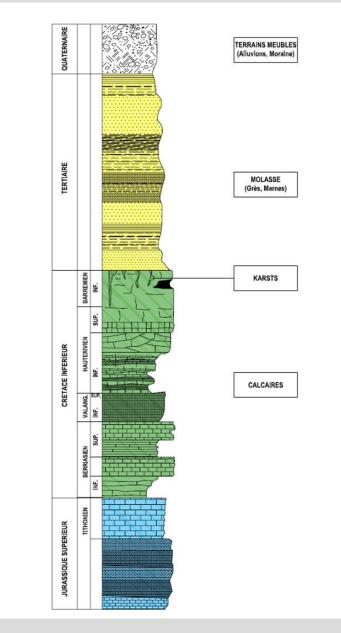


- For HE-LHC modifications are required to house a new accelerator, including:
 - Cryogenic caverns and buildings
 - Installation of fire separation walls including extension of the tunnel envelope each 400 m
 - Maintenance of the existing structure.

Crossrail – Cross Passage Temporary Frames

Brisbane – Airport Link (Similar ground to CERN)

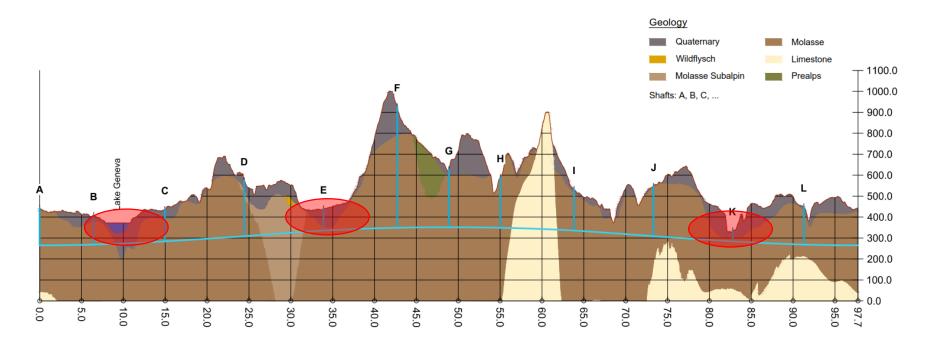
Moraines

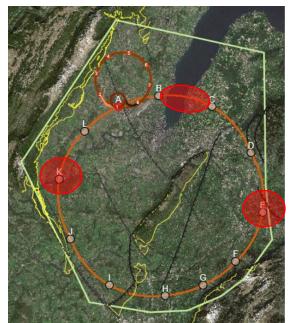

- Glacial deposits comprising gravel, sands, silt and clay
- Water bearing unit
- Low strength

Molasse

- Mixture of sandstones, marls and formations of intermediate composition
- Relatively dry and stable
- However, some risk involved: structural instability (swelling, creep, squeezing)

Limestone

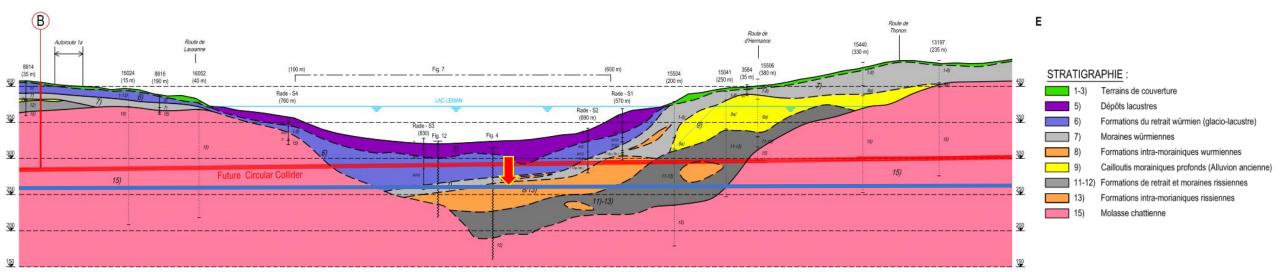

- Hard rock
- In this region fractures and karsts encountered
- High inflow rates measured during LEP construction (600L/sec)
- Clay-silt sediments in water filling karsts



Alignment Update

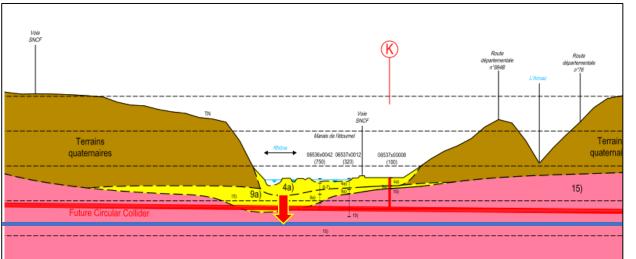
Following another round of geological review of the most challenging areas this is the baseline position considering:

- Lowest risk for construction
- Fastest and cheapest construction
- Feasible positions for large span caverns (the most challenging structures)

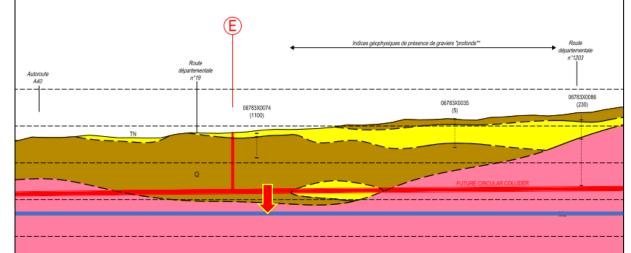

Not considering:

• Results from initial feedback on surface site locations

Geology under lake


- Data available from boreholes and seismic scans for potential lake road crossing.
- Tunnel to cross moraine layer below lake.
- Layered moraine types, improving in quality with depth. However, the deeper the tunnel in the moraines, the greater the pressure on the tunnel gaskets.

Conclusion: Lower alignment by 30 m in order for the tunnel to be at a depth with a reduced construction risk and that will not be affected by changes in the lake depth during the operation phase.

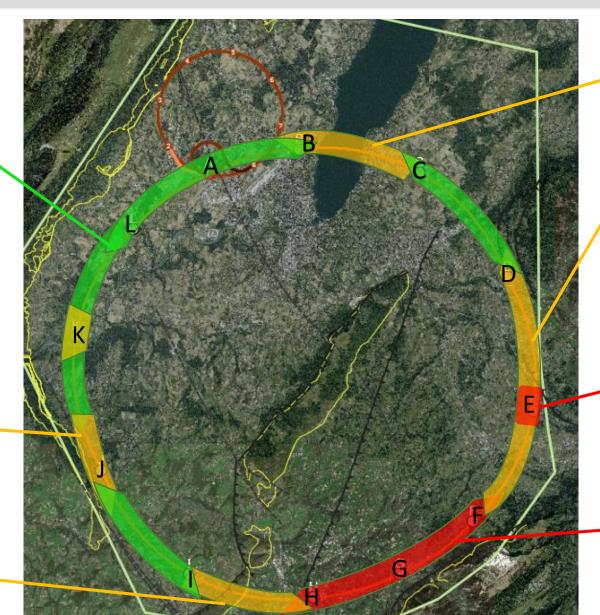

Construction method: Slurry TBM

Geology of Rhone and Arve valleys

- Data available from deep destructive drillings for water research in the vicinity of the crossing.
- Tunnel previously crossing saturated moraines below Rhone in NATURA 2000 protected area.

- Data available from oil surveys, destructive drillings and geological maps.
- Tunnel previously crossing moraine later, including permeable layers (shown in yellow)

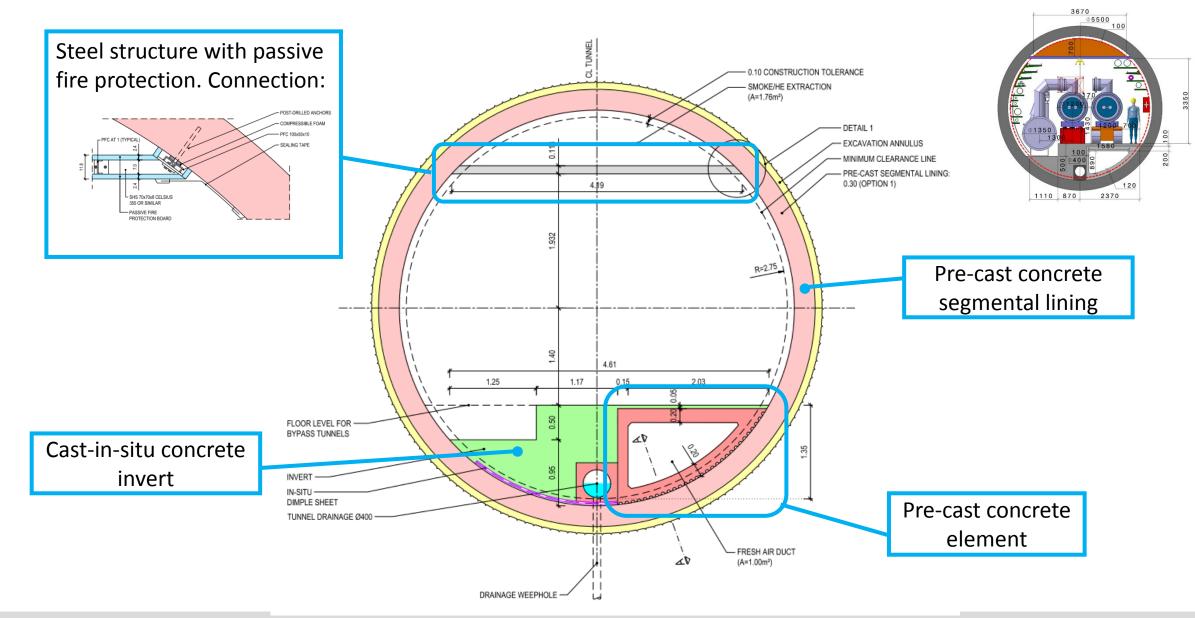
Conclusion: Lower alignment by 20 m so that the TBM mode does not need to be changed and environmental risks are minimised.


Geological Uncertainty along Alignment

- Information near to CERN is strong due to previous experience on LEP/LHC.
- Multiple deep boreholes in the area.

Alignment close to limestone rockhead

 Limestone formation known, but characteristics and locations of karsts unknown.


- Seismic and borehole information for lake crossing from proposed road tunnel, but layered nature of lake bed leads to uncertainty.
 - Location of the interface between molasse and molasse subalpine not certain, tunnel alignment in proximity.

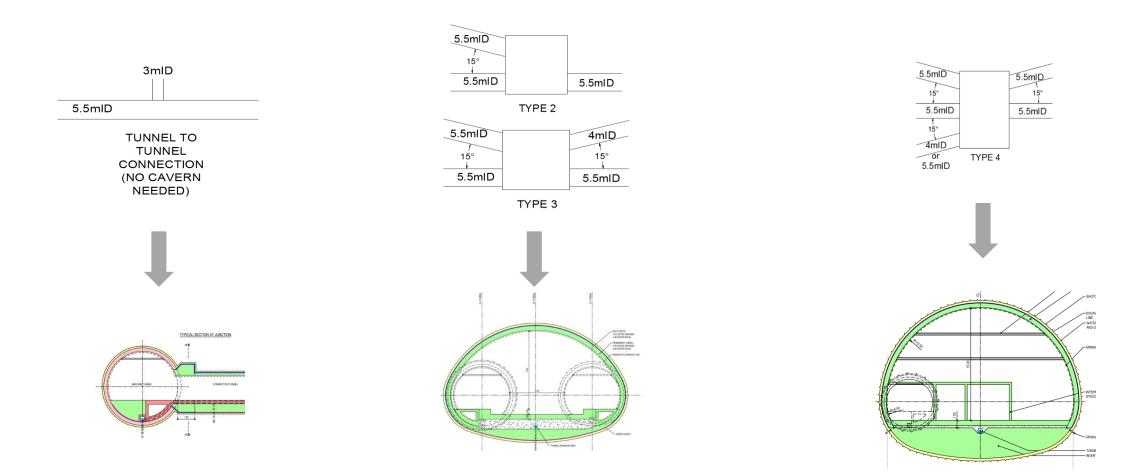
- Moraine/molasse interface not certain, cavern close to interface.
- Lack of deep boreholes in area.
- No deep borehole information available in the area.
- Complex faulted region.
- Molasse/limestone interface not certain.

Typical tunnel cross-section

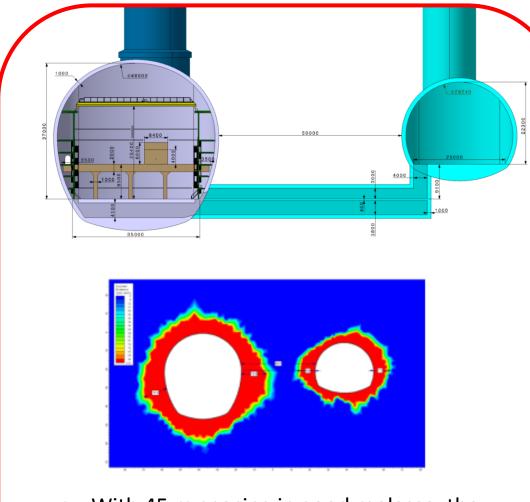
Point F options

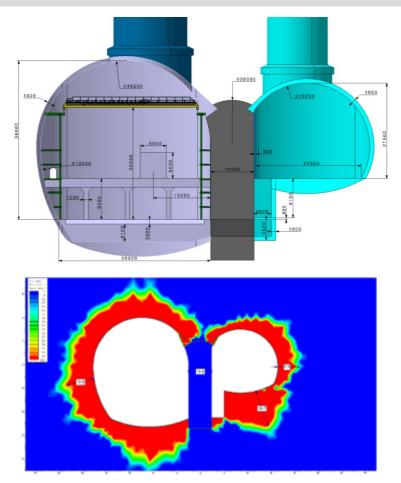
Option	576 m Shaft	10% inclined access	15% inclined access
Excavation length	576 m (12 mID)	3820 m (9.0mID)	2750 m (9.0mID)
Total duration (months)	22.2	25.8	23.2
Relative CE Cost	1	1.08	0.78
Advantages	 Shorted length of services 	 Improved surface site location and access TBM ready in cavern for tunnel excavation 	 Improved surface site location and access TBM ready in cavern for tunnel excavation
Disadvantages	 Baseline lift mechanism not feasible Surface site has difficult access 	 Increased length of services 	 Increased length of services Transport method at 15% to be confirmed

Existing LEP transfer tunnel TI18 15% from SPS to LHC


Whole project cost and schedule implications, including transport and services, still to be evaluated.

FCC week Amsterdam J. Osborne


- Junction caverns are required for structural stability when tunnels of similar size connect.
- By evaluating each case individually, it was possible to omit some junction caverns
- The remaining caverns have been grouped into 3 types. (Type 1 below indicates no cavern is needed)



Experimental point layout options

- With 45 m spacing in good molasse, the rock pillar alone is sufficient.
- Cheapest and lowest risk option for CE

• With a 10 m spacing it is feasible but a high strength concrete pillar is required.

Phase 1

Cost & Schedule estimate for "baseline" single tunnel design.

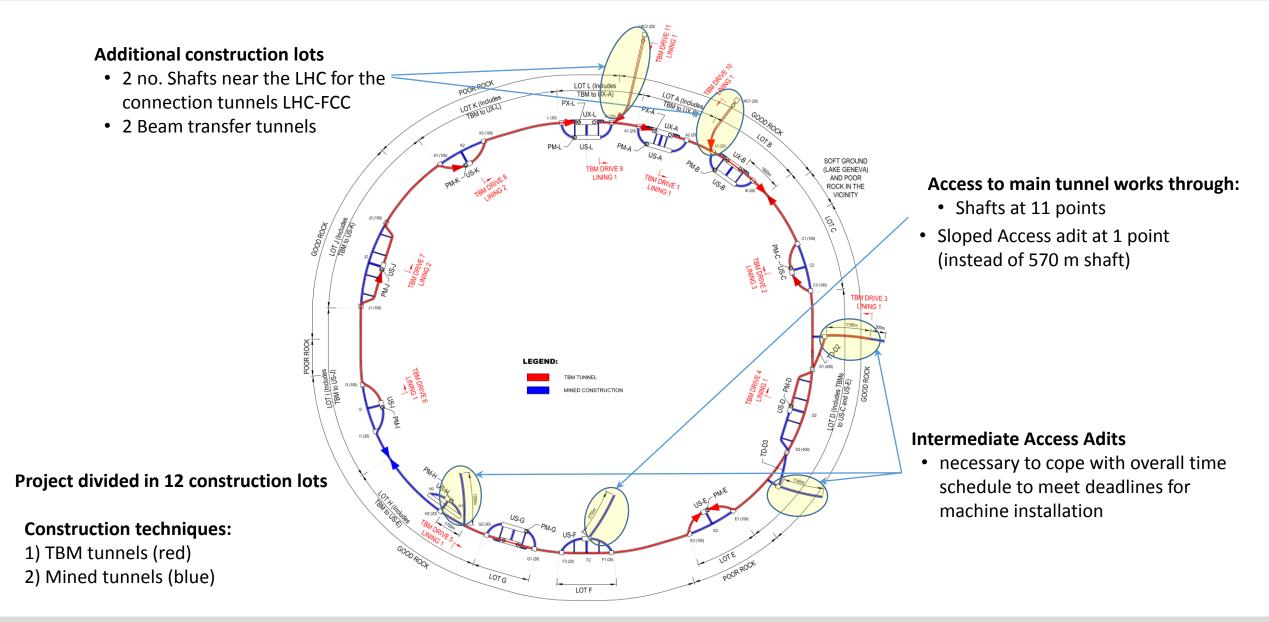
Phase 2

Cost & Schedule implications of variations considered:

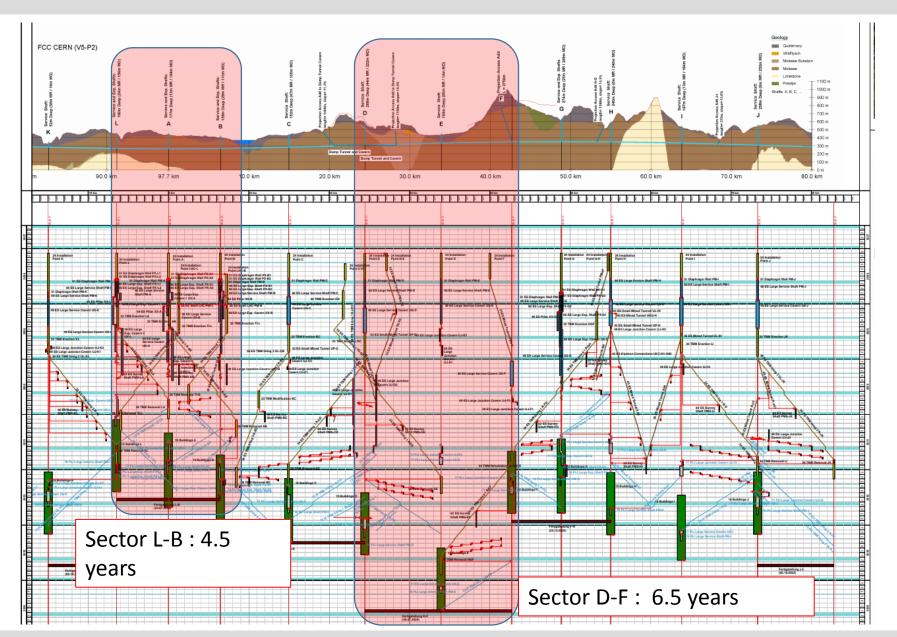
- Double tunnel design
- Shallow option
- Alternative tunnel diameters
- Alternative shaft diameters
- Alternative cavern dimensions
- ee machine requirements
- Alternative schedule + Inclined access tunnels

Phase 3

Refinement of results from Phases 1 and 2:


- Review to include updates made to baselined design.
- Incorporate desirable variations from Phase 2.

Construction Strategy



Construction Schedule

Spoil Management

Extraction Site		Volume (m ³)											
	Soft Ground	Limestone	Molasses	Total									
Construction Shaft at LHC1	11,031	0	133,735	144,765									
Construction Shaft at LHC2	0	0	202,589	202,589									
Shafts at Point A	26,469	0	791,948	818,417									
Shafts at Point B	35,161	0	326,482	361,643									
Shaft at Point C	181,807	0	385,920	567,727									
First Construction Tunnel at Point D	0	0	709,452	709,452									
Shaft at Point D	15,992	8,806	668,961	693,760									
Second Construction Tunnel at Point D	0	0	235,355	235,355									
Shaft at Point E	6,528	0	174,792	181,320									
Tunnel at Point F	0	1,206	375,414	376,621									
Shaft at Point G	33,086		471,215	504,301									
Construction Tunnel at Point H	0	244,081	750,620	994,701									
Shaft at Point H	0	7,329	421,401	428,730									
Shaft at Point I	6,528	0	796,634	803,161									
Shaft at Point J	6,528	0	805,629	812,157									
Shaft at Point K	13,381	0	610,972	624,353									
Shafts at Point L	29,990	0	671,700	701,690									
Total Spoil Volume	366,500	261,422	8,532,821	9,160,743									

Assumed bulking factor of 1.3

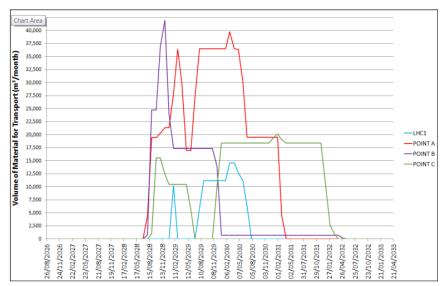


FIGURE 14-1: SPOIL SCHEDULE FOR LHC, A, B AND LHC1

Production of up to 42,000m³ per month 9million cubic meters to dispose Can the molasse be re-used?

Ground Investigation Planning

Start of Construction

	201	2019		2019		2019		2020)		2021			2022			202	23		20	024			20	25			2026			20)27			2028	
	Q1 Q2 0	3 Q4	Q1	Q2 Q	3 Q4	Q1 Q	2 Q3	3 Q4	Q1	Q2 Q3	3 Q4	Q1 0	Q2 (Q3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 (2 4	Q1 Q	2 Q	3 Q4	Q1	Q2	Q3	Q4	Q1 0	22 Q	3 Q4				
CERN feasibility		CE	RN c	oncept	ual de	sign																														
			T						•																											
	1							F		ci.				During		CI								CI		1										
Site Investigation						1	Feasic	bility SI			Princi			сіраі	parsi			Add			aan	litional SI as neces			ssary											
Consultant Contracts		Contract and tender strategy		Market Survey Award				Р	Preliminary design				Tende				er design				Construct				tion Design											
Construction Contracts																				Market Survey		_		Tende		ler ar	r and Award									
EIA and permitting documents										El and	perm	itting	doc	umenta	ation																					

Types of site investigation:

- Collection of existing information
- Walkover survey
- Geophysical investigation
- Boreholes
- Site testing (eg Insitu stress test, point load testing, SPT)
- Rock laboratory testing.

Geothermal site investigation in Satigny 2017/2018 (500m deep)

- A further round of alignment optimisation following input from surface site investigations and potentially ground investigations
- Continuing to work with integration to refine designs for all structures
- Spoil disposal planning
- Development of HE-LHC requirements
- Maintenance planning for injection chain.

