

FCC maintenance aspects and operational cycle

Arto Niemi^{1,2}, Andrea Apollonio¹ and Katy Foraz¹ ¹CERN, ²Tampere University of Technology

Acknowledgements: V. Mertens, M. Nonis and L. Tavian

Contents

- 1. Update on operations schedule
- 2. Maintenance aspects
- 3. Key challenges in achieving short turnaround

Recap on requirements

About 150 months of proton physics¹ + 15 months of ion $physics^2 =$

5 year long operation periods

- 3.5 years operation periods with
 - 1 year HW comm., MDs, short stops
 - 2.5 years lumi. run with 70% availability
- 1.5 year shutdown

2 periods at baseline parameters (10 yrs)

- Peak luminosity 5x10³⁴cm⁻²s⁻¹
- Total of 2.5ab⁻¹ (per detector)

3 periods at ultimate parameters (15 yrs)

- Peak luminosity <= 30x10³⁴cm⁻²s⁻¹
- 5ab⁻¹ per period total of 15ab⁻¹
- O(20) ab⁻¹ integrated luminosity/experiment

Detectors must sustain a total of >20ab⁻¹ and >5ab⁻¹ between maintenance stops Machine design to support 3.5 year operation periods w/o warm up or long stops

consistent with physics goal: 20 ab⁻¹ in total

165 months of physics during the FCC lifecycle

M. Benedict FCC-week, Rome, 2016
 M. Schaumann, private communication

Operation schedule version 1

- First version assumed annual technical stops (LHC like)
- Combined time for a stop + commissioning was only 1 month \rightarrow Activities to be performed cannot fit in this time window

Operation schedule version 2

- Lumping the stops together makes a stop length sufficient
- +3.5 months stop allows performing cryogenics system maintenance and injector maintenance

Operation schedule version 3

- A question was raised: Why do we have long shutdowns?
- Change 2: make shutdowns meaningful:
 - First shutdown after 10 years when FCC starts to use ultimate parameters
 - Second shutdown in middle of the run with ultimate parameters

Identified challenges with the new schedule

- 2.5 years interval between stops should be OK for rotating machines in cryogenics system
- 3.5+ month stop should allow injector chain maintenance even with LHC as an injector
- Designing system to operate long periods with limited
 maintenance + injector & experiment maintenance interval
- Cooling system maintenance¹
- Maintaining machine alignment

Cryogenics maintenance

- Cryogenics was chosen as it is the maintenance time driver
- Assumptions: Water system is maintained with the cryo,
- Three cases
 - 1. Redundant cooling towers + interconnection boxes
 - 2. Redundant cooling towers + no interconnection boxes
 - 3. Non redundant cooling towers + no interconnection boxes

Case 1

Redundant water systems allow cryogenics system to operate while the water system is maintained **Total 7 weeks**

4/3/2018

Case 2

Without interconnection boxes sectors LAB and FGH need to be warmed up during maintenance Total 11 weeks

- ce Cool-down
- Powering tests

Case 3

Without redundant water system all sectors need to be warmed during the maintenance

Total 15 weeks

Lhe emptying

Operations cycle

Recap on technical requirement

Phase	FCC target	LHC theoretical	LHC min 2017	LHC mean 2017
Setup	10	10	-	-
Injection	40	16^a	28.0	77.1
Prepare ramp	5	-	2.3	5.0
Ramp-Squeeze-Flat top	20+ 5+3	20	20.2+13.4+2.8	20.5+18.1+4.5
Adjust	5	-	3.3	7.9
Ramp down	20	20	36	153.2^{b}
Total	108 (1.8 h)	$\approx 70 \ (1.2 \text{ h})$	106.0 (1.8 h)	286.3 (4.8 h)

^aThis assumes 20 seconds-long SPS cycles.

^bThe ramp down phase includes the recovery time from failures.

Note: Production calculations assume 4 h turnaround, technical performance has margin!

Times in minutes

- FCC target from: R. Alemany Fernandes et al. CERN-ACC-2016-0341.
- LHC theoretical from: LHC Design report, V. 1, Ch. 3.1.5, p. 24.
- LHC 2017 values from: M. Pojer, LHC operation, in 8th LHC Operations Evian Workshop.

Key challenge 1: Ramp and Ramp-down

|--|

Fast (20 min) ramp issues:

Energy

- Peak power consumption;
 Requirements for power converters;
- Dynamic heat load to cryogenics;
 More RF-cavities

If ramp is extended, we need to understand the trade off: Ramp rate vs. luminosity production, cost & system complexity

Magnet powering: Francisco R. Blánquez FCC-Week 2018 Transient modes impact on cryogenics: Laurent Tavian FCC-Week 2018

Key challenge 2: Injection

Upgraded LHC:

- Flat-top energy 3.3 TeV
- 4 Cycles to fill the FCC
- 66 Injections to FCC / cycle
- Cycle duration = 10-12 min

Superconducting SPS:

- Flat-top energy 1.3 TeV
- 33 Cycles to Fill the FCC
- 4 Injections to FCC / cycle
- Cycle duration = 1 min
- Challenges today in the LHC: beam is not or injections are rejected, according W. Bartmann this should be solvable
- So, <u>if</u> both options are technically feasible, question is: Which one is cheaper to build and operate?
- LHC & SPS (upgrades & consolidation) + SC transfer lines vs.
 New SC machine in SPS tunnel + NC transfer lines

Injector options status: Brennan Goddard FCC-Week 2018

Conclusions

Future studies should include:

- Operation schedule feasibility study → repeating the presented cryo-analysis with other systems
- Benefit / trade-off analysis of increasing the ramp times
- Injector phase operations & cost study

