Micro-to-nanoscale characterisation of SRF cavity coatings for the FCC using advanced FIB microscopy

Alexander Lunt
SRF Development

Niobium cavities

Substrate

Superconducting thin film

Materials

Manufacturing methods

Research / experience

Prototyping / physical testing

Modelling / theoretical testing

Performance Testing

Microstructural characterisation
Microstructural characterisation

- Arising need for:
 - Sub-surface characterisation
 - Thin film cross sections
 - Substrate near-surface characterisation
 - Elemental mapping
 - Elemental diffusion, segregation, phase identification
 - Microscale mechanics
 - Thin film residual stresses – T_c & peel off
 - Nanoscale resolution imaging
 - Grain morphology, dislocation density, etc…
Focused ion beam (FIB) analysis

- Anticipated arising need
- 2nd May 2016
- Zeiss XB540 FIB-SEM
 - Sub nanometre resolution
 - Ga+ with Pt and C deposition
 - Energy Dispersive Spectroscopy (EDS)
 - Atlas 5
 - Scanning Transmission Electron Microscopy (STEM) detector
What is FIB analysis?

- Combined with Scanning Electron Microscope
- Accelerate and focus a beam of ions
FIB deposition

- Interaction between precursor and ion beam
- Atomic species of interest deposited
FIB cross sectional milling

- Pt deposition barrier – protect surface
- FIB milling to produce cross section
- Tilt corrected SEM imaging
Example Studies

- High-Power Impulse Magnetron Sputtering
 - Pressure, frequency, voltage bias, coating position
- 18 samples studied

Increased frequency = higher coating rate
Surface contamination

- Cu rich deposits observed
- What is the influence on the microstructure?
Surface contamination

- Cu rich deposits observed
- What is the influence on the microstructure?
High resolution elemental mapping

- Need to examine elemental diffusion
- Limiting factor on EDS resolution is interaction volume not beam spot size
- Resolution insufficient for thin film samples
Transmission EDS

- Improve resolution – reduce interaction volume
- Lamella 100-200 nm thick
- Nanoscale mapping possible
- Problem:
 - 10-20 hours milling time
 - Complex experimental process – prone to failure
 - Many samples need investigating
Solution: ‘Rapid’ TEDS

- New approach based on ‘in-situ’ lamella
- No need for risky removal of lamella
- Significant reduction in milling time (4 hours)
- Similar nanoscale resolution EDS mapping possible.
Contamination assessment

- Electron contrast in cross sectional analysis
- The origins of this:
 - Phase segregation
 - Contamination
 - Electron channelling from grain orientation
- TEDS can provide answers
Microscale residual stress analysis

- Residual stress in thin films
 - Peel off & T_c
- X-ray diffraction conventional approach
 - Average over large area
- Need to quantify at specific locations
 - origins of failure
Ring-core residual stress analysis

- FIB based technique
- Incremental annular milling
- Relaxation of core
- Record SEM images
- Quantification using digital image correlation
- Compare to finite element simulations
- Quantify residual stress originally present within core
Nb$_3$Sn thin films

- Influence of coating pressure, temp and thermal processing

- Thermal treatment = 650°C for 5 hours

- High compressive stress = higher critical temperature
Residual stress results

- Highly compressive stresses*
- Lower temp + higher pressure – reduced stress
- Thermal treatment – increase in stress

![Graph showing stress results](image-url)

* Highly compressive stresses refer to stresses that are predominantly compressive in nature.
Cavity substrate analysis

- Investigations into Cu cavity manufacturing techniques ongoing
 - Spinning and electro-hydraulic forming
 - Scanning transmission electron microscopy
 - TEM lamella
Potential insights

- Nanoscale behaviour
- Dislocation density
- Surface response
- Grain characteristics
- Comparison between inner & outer surfaces

Further discussion – upcoming presentation
Carolina Abajo Clemente 14:30 Berlage zaal (1.9)
Summary

• Powerful tool with broad spectrum of techniques now possible
• Conventional & tailored techniques directed towards ongoing FCC projects
• Useful results which have improved understanding and facilitated design improvements

If you have any studies which may benefit from FIB analysis, please just get in touch!
Any questions?

Email: alexander.lunt@cern.ch
Mobile: 16 10 86
Office: 63 64 4 599/R-007
FIB Lab: 63 11 1 376/R-014