Quench Protection of CCT-type High-field Magnets for Accelerators

Work supported by the Swiss State Secretariat for Education, Research and Innovation SERI.

J. Gao (PSI), B. Auchmann (CERN/PSI), L. Brouwer (LBNL), S. Caspi (LBNL), J. Mazet (CERN), G. Montenero (PSI), S. Sanfilippo (PSI)

Abstract

The Canted-Cosine-Theta (CCT) type magnet has been proposed for Future Circular Collider (FCC) design. Its unique geometry lowers the coil stress intrinsically. Nevertheless, the former itself is also a barrier for heat to quickly propagate in case of a quench. To succeed in the magnet design and construction, further investigation is required on its electrothermal behavior. The potential detection & protection concepts are studied in both aspects of multiphysics simulations and experiments. The results will allow us to validate the conceptual design and feasibility of the construction of a fast and efficient quench protection system of CCT-type magnets for accelerators.

Context

- CCT: Nested & tilted solenoids oppositely canted; Production of a pure vertical field
- Windings placed within formers intercepting Lorentz forces on each turn to prevent stress accumulation

PSI CCT program with CERN & LBNL to optimize FCC design in performance, protection

magnets CD1 and CD2

FCC Four-layer CCT

Former Windings

Studies on two-layer model magnets to prove four-layer magnet technologies, especially searching for ways to significantly reduce overall quench detection time, and these studies may also benefit other magnet designs

Quench

- Transition from superconducting to normalconducting state: $R_{\text{quench}} \nearrow$ Joule heating in Cu, causing $T \nearrow$ in normal zone
- Protection: Dissipate magnetic energy as heat or quench entire coil to limit T_{peak} and avoid damage
- Different phases in a quench:
- I constant, heat propagation:
- 1a. Detection $\Delta t_{\rm thres}$
- 1b. Validation $\Delta t_{\rm val}$
- I decreases, energy dissipation by Joule heating:
- 2a. Protection $\Delta t_{\rm prot}$
- 2b. Discharge $\Delta t_{\rm dec}$

 Time scale in millisecond! Magnet design efficiency: less protection time = less Cu fraction in SC strand = smaller coil

Simulation Methods

- Main tool: ANSYS Mechanical APDL miss features like multi-dependency material properties and cable-eddy currents
- Objectives: Electromagnetic-thermal coupled quench simulation in a hierarchical approach and use of thermal and electrodynamic elements (User-Defined Elements) developed by LBNL

Detection Concepts

- Voltage detection using co-wound $V_{\rm meas} = V_{\rm q}$; low-risk but $\Delta t_{\rm val}$ obligatory
- Current detection using co-wound Nb₃Sn wires: expect to eliminate $\Delta t_{\rm val}$; can be studied in detail
- Optical detection using co-wound optical fibers: temperature and strain data from analysis of spectral shift (Rayleigh backscattering spectra); high-risk but shorter delay time; collaboration with NCSU

Protection Concepts

- Energy extraction: suitable for a single-magnet system
- Coupling-Loss Induced Quench (CLIQ): I oscillations → coupling losses \rightarrow quench; most promising method
- Inductive protection using co-wound Cu tapes: quench process enhancement

Protection of a two-layer model CD1 with energy extraction

- CD1: $I_{ss} = 18 \text{ kA}$, B = 11 T, $T_{op} = 4.2 \text{ K}$
- Voltage detection: $t_{\rm d} = \Delta t_{\rm thres} + \Delta t_{\rm val} + \Delta t_{\rm switch}$
- Energy extraction: $R_{\text{dump}} = 55.6 \text{ m}\Omega \text{ } (U_{\text{max}} = 1 \text{ kV})$
- MIITs gives time budget $t_{\rm d}$ for a given superconductor and a given current decay: If $T_{\rm max} < 350 \, {\rm K} \rightarrow$ MIITs $< 10 \rightarrow$ Upper-limit $\Delta t_{\rm thres}^{\rm ref}$
- No $\Delta t_{\rm val}$ if a high $U_{\rm thres}$ used (500 mV)
- Assume $\Delta t_{\rm switch} = 5 \, {\rm ms} \rightarrow {\rm Upper-limit} \, t_{\rm d}$
- For a same $U_{\rm thres}$, quench simulation gives $\Delta t_{\rm thres}^{\rm ANSYS}$
- Slow turn-to-turn and layer-to-layer propagation

3-turn Helical model at I = 12 kA, B = 7.3 T Initial conditions: T = 20 K for 1st turn ($T_{cs} = 9.8 \text{ K}$) and $T = T_{op}$ for others Better observation of quench propagation at a low operation level (t longer)

I						
	/ [kA]	<i>B</i> [T]	$\Delta t_{ m thres}^{ m ref}$ [ms]	$\Delta t_{ m thres}^{ m ANSYS}$ [ms]	MIITs [MA ² S]	$T_{\rm max}$ [K]
 	18	11	23.5	3.8	7.6	199
	15.5	9.5	33.5	12	7.5	193
 	12	7.3	59	26.9	6.8	145

MIITs: Total MIITs in a quench, including the current decay T_{max} : Max temperature estimated by MIITs after a quench Temperature profiles along the coil at different times

Conclusion

- Good time margin and temperature margin
- CD1 protectable magnet with energy extraction; Test-bed for other detection & protection methods

Future Directions

- Study different protection concepts, especially CLIQ, via simulations in two-/four-layer magnets
- Implement, test and validate the system in twolayer model magnets

	Experimentation			
	CD1	CD2		
Detection	Co-wound Cu wire + optical fiber	Co-wound Nb ₃ Sn wire + optical fiber		
Protection	Energy extraction + CLIQ	Energy extraction + CLIQ, possibly with co-wound Cu tapes		
Diagraphica Chat bootons I acquetic a				

Diagnostics Spot heaters + acoustic emission sensors

Insulation braiding with thin co-wound Cu wire

Acknowledgements

I would like to thank F. Scurti (NCSU) for his expert advice and help so far with the optical wire in the project.

References

- 1) Auchmann, B., et al. Electromechanical Design of a 16-T CCT Twin-Aperture Dipole for FCC. IEEE Transactions on Applied Superconductivity, 28(3), 1-5, 2018.
- 2) Bottura, L. Superconductors. Presentation, November 2012.
- 3) Brouwer, L. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy. PhD thesis, University of California, Berkeley, 2015.
- 4) Marchevsky, M. Protection of superconducting magnet circuits. Lecture notes of U.S. Particle Accelerator School, 2017.