Towards an affordable FCC: TMC superconducting wires as alternative?

B. Seeber

About TMC

TMC = Ternary Molybdenum Chalcogenide

M: chemical element

X: S, Se and Te

Most important for superconductivity

Compound	T _c (K)	B _{c2} @ 4.2 K (T)
PbMo ₆ S ₈	15	51
SnMo ₆ S ₈	14	~ 30

1st stage: monofilamentary wire

PIT - process

1st stage: monofilamentary wire

Extrusion billet: OD 50 mm, length 100 mm (~ 1.5 kg)

 \sim 1 km with OD = 0.4 mm

R. Grill et al. Proc. Plansee Seminar 1989

FCC Week 2017 (A. Ballarino)

Development targets - Nb₃Sn (starting with a 4 years program)

Critical current density

J_c in the superconductor cross section of a TMC wire (PMS)

N. Cheggour et al., JAP 81, 1997

Master scaling curve

TMC wires (PMS) with different layout

$$F_p = I_c B = C B_{c2}^{*2.4} b^p (1-b)^q$$

- W. Goldacker (IEEE Trans. Mag. 1991)
- Y. Kubo (Cryogenics 1993)
- N. Cheggour (JAP 1997)

Critical current density

J_c in the superconductor cross section of a TMC (PMS) wire

N. Cheggour et al., JAP 81, 1997

How to achieve prospective critical current density 1/2

New manufacturing process: WIPO/PCT - WO 2015/117249 A1

How to achieve prospective critical current density 2/2

Distribution of the critical temperature of starting TMC powder (PbMo₆S₈) by specific heat measurement

Costs

Costs, costs, costs

Cost for raw materials

PbMo₆S₈ (PMS) bulk material (batch of 50 kg)

Constituent	Purity (%)	Price (\$/kg)
Pb granulate	99.99	65
Mo powder	> 99.95	77
S powder	99.99	101
PbMo ₆ S ₈		81

Cost for wire raw materials

OD (TMC wire): 1 mm

OD (TMC filament): 10 μm

Stabilizer/sc fraction:

OD (Mo barrier): 14.1 μm / 12.2 μm

Cost for wire raw materials

L. Cooley (SUST 2005)

(C) Costs	Nb47Ti (2005)
Superconductor cost (\$ kg ⁻¹)	105
Stabilizer cost (\$ kg ⁻¹)	5
Reactants cost (\$ kg ⁻¹)	
Diffusion barrier cost (\$ kg ⁻¹)	220
Ancillary materials cost (\$ kg ⁻¹)	_
(D) Cost indices	
Raw materials (\$ kg ⁻¹)	45

Nb47Ti (2017)	Nb ₃ Sn (2017)	PbMo ₆ S ₈
137	260 - 377	81
7	7	(101)
	20 - 195	
286	286 - 546	265
	7	17
59	95 - 138	70 - 121

Purchase price

P = Production scaling factor

Superconductor	Raw materials	Purchase price	Р
	(\$/kg)	(\$/kg)	
NbTi (LHC dipole)	59 ^a	195 ^a	3.3
N ₃ Sn (ITER poloidal)	116 ^a	940 ^b	8.1
TMC (PMS prospective)	70 -121 ^c	350 - 605 ^c	5

- a) Data from L. Cooley (SUST 2005) corrected for inflation 2017
- b) Data from Fusion4Energy, Barcelona
- c) Data for a multifilamentary TMC superconductor (stabilizer/sc fraction = 1)

Performance index

$$\$/kAm = (\frac{\rho}{J_{eng}}) \times \$/kg$$

Engineering current density

OD (TMC wire): 1 mm Stabilizer/sc fraction = 1

Performance index

$$$/kAm = (\frac{\rho}{J_{eng}}) \times $/kg$$

Superconductor	g/cm ³	\$/kg
NbTi-LHC (R=1.8) Nb ₃ Sn-RRP (R=1) Bi2212 (R=4) ReBCO TMC (Mo/sc = 1)**	8.0 9.1 8.6 8.9 8.0	195 940 10'360 12'640 494
		605

^{**}OD wire = 1mm OD filament = 10 μ m, 2220 and 2860 filaments Production scaling factor = 5

* D. Larbalestier et al. Nature Materials, 2014 and MT25, 2017

Summary

- Isotropic (almost) upper critical field up to 51 Tesla @ 4.2 K
- Critical currents may be substantially improved by new manufacturing process
- Direct extrusion and wire drawing with round or rectangular cross section (almost like NbTi)
- No reaction heat treatment after wire manufacturing
- Winding of magnets is similar to that of NbTi (within limits)
- TMC wires were already manufactured on industrial scale up to 1 km of length
- The filament size can be adjusted within a wide range
- Yield strength R_{p02} is about 800 MPa @ 4.2 K (Nb₃Sn about 200 MPa)
- Raw material costs for a TMC superconductor are between 70 121 \$/kg (range of Nb₃Sn)

