

FCC heavy-ion physics studies

(INFN Padova, Italy)

on behalf of the HI Working Group of FCC-hh/Physics&Exp

Outline

- Organization and documents (Physics YR and CDR)
- Ions at the FCC: projected performance
- Quark-Gluon Plasma studies (high-density QCD in the final state of heavy-ion collisions)
- Small-x and gluon saturation (high-density QCD in the initial state)

Organization and documents

- Ions at FCC-hh Working Group:
 - Sub-group of "FCC-h Physics, Experiments, Detectors"
 - Machine studies: J. Jowett, M. Schaumann, E. Logothetis Agaliotis
 - Twiki https://twiki.cern.ch/twiki/bin/view/LHCPhysics/Heavylons
- A few workshops/meetings 2013-17
 - https://indico.cern.ch/event/331669/ and links therein
- In FCC-hh Physics YR 3, 635–692, arXiv:1605.01389
 - > 40 pages, about 50 authors
 - Section editors: N. Armesto, A. Dainese, D. d'Enterria, J. Jowett, J.P.Lansberg, G. Milhano,
 C. Salgado, M. Schaumann, M. van Leeuwen, U. Wiedemann
- In preparation for FCC CDR:
 - ➤ Vol. 1 (FCC Physics): red. version of YR + updates (~15 pages)
 - Vol. 2 (FCC-hh): executive summary (2 pages)

Organization and documents

lons at FCC-	Contents	
Sub-group d	1 Executive summary	
Machine stu	2 Summary of the heavy-ion performance of FCC-hh ¹	
➤ Twiki https:/	 QGP studies: bulk properties and soft observables ²	
A few worksh	3.2 Collective phenomena from heavy-ion to pp collisions	
➤ https://indico	3.3 Effect of the charm quark on the QGP equation of state	
♦ In FCC-hh Pl	4 QGP studies: hard probes ³	
	4.1 Jet quenching	
➤ 40 pages, a	4.2 Open and closed charm and bottom production	
Section edit	5 Small- x and nPDF studies $\frac{4}{}$	perg, G. Milhano,
C. Salgado,	5.1 Small-x and nPDF studies in hadronic p—A and A—A collisions	
In preparation	5.2 Exclusive photoproduction of heavy quarkonia	
Vol. 1 (FCCVol. 2 (FCC	6 Contributions to other sectors of high-energy physics ⁵	
	6.1 Photon–photon collisions	
	6.2 Fixed-target collisions using the FCC proton and lead beams	

Outline

- Organization and documents (Physics YR and CDR)
- Ions at the FCC: projected performance
- Quark-Gluon Plasma studies (high-density QCD in the final state of heavy-ion collisions)
- ◆ Small-x and gluon saturation (high-density QCD in the initial state)

Energies and luminosity studies

Centre-of-mass energy per nucleon-nucleon collision:

$$\sqrt{s_{NN}} = \sqrt{\frac{Z_1 Z_2}{A_1 A_2}} \sqrt{s_{pp}}$$

$$\sqrt{s_{pbPb}} = 39 \ TeV$$

$$\sqrt{s_{ppb}} = 63 \ TeV$$
for $\sqrt{s_{pp}} = 100 \ TeV$

- Operation scenarios and luminosity projections
 - \geq 2015 first study on operation scenario and estimates of luminosity: L_{int}/month \sim 8/nb for Pb-Pb, with 1 injection from LHC
 - M. Schaumann, Phys. Rev. ST Accel. Beams 18 (2015) 9, 091002, arXiv:1503.09107
 - > 2016 optimised with **4 injections** and Run-2 LHC parameters: x9 in L_{int} (**Baseline** scenario)
 - ≥ 2017 optimised filling scheme, bunch spacing, turn-around: x3 in L_{int} (Ultimate scenario), introduced also scenario with 2 IPs
 - M. Schaumann, talk at FCC Week 2017
 - Ongoing: ions lighter than Pb (e.g. Ar, Kr) could allow for further increase of "equivalent" Lint

Luminosity for Pb-Pb and p-Pb → Talk by J. Jowett, https://indico.cern.ch/event/656491/contributions/2939104/

Ultimate vs. baseline scenarios: reduced bunch spacing (50 ns) and β^* (0.3 m)

	Unit	Baseline		Ultimate	
Operation mode	-	Pb-Pb	p-Pb ^a	Pb-Pb	p-Pb ^a
Centre-of-mass energy per nucleon	[TeV]	39.4 62.8		39.4	62.8
No. of bunches	-	2760		5400	
Bunch spacing	[ns]	100		50	
No. of particles per bunch	$[10^8]$	2	164	2	164
Transv. norm. emittance	$[\mu \text{m.rad}]$	1.5 3.75		1.5	3.75
β -function at the IP	[m]	1.1		0.3	
Number of IPs in collision	-	1 or 2		1 or 2	
Initial luminosity	$[10^{27} {\rm cm}^{-2} {\rm s}^{-1}]$	34	2800	248	20400
Peak luminosity (1 experiment)	$[10^{27} {\rm cm}^{-2} {\rm s}^{-1}]$	80	13300	320	55500
Integrated luminosity (1 experiment)	[nb ⁻¹ /run]	35	8000	110	29000
Integrated luminosity (2 experiments)	[nb ⁻¹ /run/exp.]	23	6000	65	18000

Includes 50% operation efficiency

- >100/nb in a 1-month Pb-Pb in ultimate scenario: ~ 10x full LHC programme
- 15 1-month HI runs in tentative FCC-hh schedule

Outline

- Organization and documents (Physics YR and CDR)
- ♦ Ions at the FCC: projected performance
- Quark-Gluon Plasma studies (high-density QCD in the final state of heavy-ion collisions)
 - Global properties and collective effects
 - Hard probes and jet quenching
- ◆ Small-x and gluon saturation (high-density QCD in the initial state)

Quark-Gluon Plasma studies at FCC

Properties of QGP:

- QGP volume increases strongly
- QGP lifetime increases
- Initial temperature higher
- Equilibration times reduced

QGP "fireball": global properties

Extrapolation to 39 TeV: increase wrt LHC 5.5 TeV

 $dN_{ch}/d\eta \times 1.8$

Volume x1.8

 $dE_T/d\eta$ (& ϵ) x2.2

	Quantity	Pb-Pb 2.76 TeV	Pb-Pb 5.5 TeV	Pb-Pb 39 TeV
	$\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ at $\eta=0$	1600	2000	3600
,	Total $N_{ m ch}$	17000	23000	50000
	$\mathrm{d}E_{\mathrm{T}}/\mathrm{d}\eta$ at $\eta=0$	1.8-2.0 TeV	2.3-2.6 TeV	5.2-5.8 TeV
	Homogeneity volume	$5000 \; \mathrm{fm}^3$	$6200~\mathrm{fm^3}$	$11000~\mathrm{fm}^3$
	Decoupling time	$10~\mathrm{fm}/c$	$11~\mathrm{fm}/c$	13 fm/c
	ε at $ au=1$ fm/ c	12-13 GeV/fm ³	16-17 GeV/fm ³	35-40 GeV/fm ³

Higher QGP temperature: thermal charm?

Simple estimate (from Bjorken + Stefan-Boltzmann):

- 20% larger for the same time
- QGP formation time could be smaller at FCC
- Initial temperature could reach close to 1 GeV

• Expect abundant thermal production of charm in the QGP from $gg \rightarrow c\overline{c}$, $q\overline{q} \rightarrow c\overline{c}$ + NLO ...

- Up to 100% increase wrt primary charm
- Sensitive to QGP properties: T vs τ , and τ_0

Outline

- Organization and documents (Physics YR and CDR)
- ♦ Ions at the FCC: projected performance
- Quark-Gluon Plasma studies (high-density QCD in the final state of heavy-ion collisions)
 - ➤ Global properties and collective effects
 - Hard probes and jet quenching
- Small-x and gluon saturation (high-density QCD in the initial state)

Parton energy loss in the QGP

- High-energy partons from hard scattering lose energy while crossing the QGP, mainly via radiation of gluons
- Unique tool to learn about the QGP "opacity" and the properties of the QCD interaction in an extended medium
- At the LHC, the focus is progressively shifting towards flavour-tagging and correlations (di-jets and boson-jet)
 - $\triangleright \gamma(Z)$ -jet provides a measurement of the initial parton energy
- ◆ FCC: increase of √s and L_{int} by ~ x10 at FCC will make available novel ways to probe the QGP, e.g. top ... and Higgs

Top production at FCC energy

- Top cross section increases by x80 from 5.5 TeV to 39 TeV
- Kinematic simulation study: $3x10^5$ $t\bar{t} \to b\bar{b}\,\ell\ell\,\nu\nu$ per run in the baseline scenario (35/nb)
- Top p_T distribution up to ~ 2 TeV/c

D. d'Enterria, et al. Phys. Lett. B746 (2015) 64–72, arXiv:1501.05879 [hep-ph]

Boosted color singlets from top events

◆ Boosted (i.e. high p_T) top events:

$$t\overline{t} \rightarrow b\overline{b} + q\overline{q} + \ell + v$$

This $q\overline{q}$ is produced as a color singlet and it "sees" the QGP with a time delay given by the boost of the top and of the W

The rest of the final state

$$2b - jets + \ell + E_{r}$$

is used to tag the event topology

- Boosted-top events can therefore be used to address two novel studies in the sector of parton energy loss:
 - 1. Time-evolution of QGP opacity, because of the boost of the top and W
 - 2. Role of color coherence in parton energy loss, because the pair is initially a color singlet

Boosted color singlets from top events

- Energy loss of the $q\overline{q}$ pair results in a shift of the W mass reconstructed from the $q\overline{q}$ jet(s)
- Observables:
 - The shift of the W mass discriminates scenarios on the role of color coherence (small shift in case coherence plays a role)
 - 2. The shift vs top p_T probes the timeevolution of the QGP density

Kinematic simulation study, Pb-Pb 39 TeV (30/nb) <τ> (unquenched) [fm/c] 2.3 0.6 0.7 0.9 1.9 unquenched = 2.5 fm/c90 quenched = 5.0 fm/ct = 10.0 fm/ct = 1.0 fm/c85 FCC $\sqrt{s_{NN}}$ = 39 TeV $\mathsf{m}_{\mathsf{w}}^{\mathsf{reco}}\left[\mathsf{GeV/c}^{2}\right]$ 2 fb⁻¹ pp, 30 nb⁻¹ PbPb 80 75 70 15% quenching 65 200 400 600 800 0 preco (bin average) [GeV/c]

Apolinario, Milhano, Salam, Salgado, arXiv:1711.03105

Probing the QGP with Higgs bosons?

- Higgs lifetime τ ~50 fm/c > QGP lifetime ~10 fm/c
- Strong interaction with QGP gluons induces decay to gg (g+H → gg) depleting its decay channels to γγ and ZZ*
- First estimate of absorption cross section: ~10 μb
- → gives suppression by x2 in central Pb-Pb

- First estimate of significance with FCC reference detector:
- ~ 5 (10) σ in one Pb-Pb month with baseline (ultimate) L_{int}
 - → Promising!

D. d'Enterria, arXiv:1701.08047, D. d'Enterria, C. Loizides, in preparation

Outline

- Organization and documents (Physics YR and CDR)
- ◆ Ions at the FCC: projected performance
- Quark-Gluon Plasma studies (high-density QCD in the final state of heavy-ion collisions)
- Small-x and gluon saturation (high-density QCD in the initial state)
 - With hadronic heavy-ion collisions
 - > With photon-induced collisions

High-density QCD in the initial state: Saturation at low *x*

 Explore new unknown regime of QCD: when gluons are numerous enough (low-x) & extended enough (low-Q²) to overlap → Saturation, Non-linear PDF evolution

Enhanced in nuclei: more gluons per unit transverse area

Saturatio n scale:
$$Q_S^2 \sim \frac{Ag(x,Q_S^2)}{\pi A^{2/3}} \sim A^{1/3}g(x,Q_S^2) \sim A^{1/3}\frac{1}{x^{\lambda}} \sim A^{1/3}\left(\sqrt{s} \ e^y\right)^{\lambda}_{(\lambda \sim 0.3)}$$

Saturation affects process with $Q^2 < Q_S^2$ Explore saturation region:

- \rightarrow decrease x (larger \sqrt{s} , larger y)
- → increase A

Kinematic coverage Q² vs. x: pre-LHC

Kinematic coverage Q² vs. x: pA LHC

Kinematic coverage Q² vs. x: pA FCC

Kinematic coverage Q² vs. x: pA FCC

Kinematic coverage Q² vs. x: pA, eA FCC

Searching for saturation with forward di-jet measurements in p-Pb

- ◆ Saturation effects → azimuthal decorrelation of di-jets
- Focus on di-jets with rapidity 3-5: small-x partons in the Pb
- Decorrelation k_T would be of the order of Q_s (~ few GeV)

C. Marquet et al., based on JHEP 1612 (2016) 034

Constraining nuclear PDFs with top

Within collinear factorisation, nuclear effects (including high-density effects at small-x)
described using nuclear modifications to the proton PDFs:

◆ Top production measurements at FCC in p-Pb and in Pb-Pb can reduce by a factor ~2 the present uncertainty on the nPDFs at $Q = m_{top}$, in particular at x > 0.1 (EMC region)

D. d'Enterria et al., PLB746 (2015) 64–72, arXiv:1501.05879

Summary

- Contributions to the FCC CDR are being prepared, focus on novel aspects wrt LHC
- ◆ Pb-Pb energy: 39 TeV; L_{int}/month projections >10x LHC programme
- Study of the Quark-Gluon Plasma
 - ➤ Larger temperature → thermal production of charm
 - ightharpoonup Larger \sqrt{s} and $L_{int} \rightarrow$ new hard observables, e.g. top, to study jet quenching
- Study of high-density initial state
 - ➤ Unique access to saturation region (down to x<10-6) with perturbative probes, e.g. forward-y di-jets
 - Unique access to [small-x, large-Q²] region with top, W, Z
- Interesting and unique contributions to other sectors of HEP (see Extra Slides)
 - Photon-photon collisions
 - > Fixed-target collisions with extracted beams
 - ➤ Input to collision models for ultra-high-energy cosmic rays

EXTRA SLIDES

Photon-induced collisions

- ◆ Nuclei generate strong EM fields from coherent emission of Z=82 p's
- Photon-induced collisions can occur when two nuclei cross without interacting hadronically

- Huge photon fluxes:
 - $ightharpoonup \sigma(\gamma-\text{Pb}) \sim Z^2 (\sim 10^4 \text{ for Pb})$ larger than in pp
 - $ightharpoonup \sigma(\gamma-\gamma) \sim Z^4 (\sim 5.10^7 \text{ for Pb-Pb})$ larger than in pp
- Maximum c.m.s. energies for Pb-Pb at FCC:

$$\sqrt{s_{\gamma\gamma}} = W_{\gamma\gamma} \sim 1.2 \text{ TeV } \sqrt{s_{\gamma Pb}} \sim 7 \text{ TeV}$$

γγ physics at FCC (Pb-Pb)

- Effective lumi $dL_{eff}/dW_{\gamma\gamma}$ for $\gamma\gamma$ processes from LHC to FCC: $x10^2$ at low masses, $x10^4$ for Higgs, $x10^5$ for ZZ production
 - Unique tests for EW sectors of the SM

 γγ→γγ process has potential sensitivity to New Physics

$$N_X = \int \frac{\mathrm{d}L_{\gamma\gamma}}{\mathrm{d}W_{\gamma\gamma}} W_{\gamma\gamma} \sigma_X^{\gamma\gamma} (W_{\gamma\gamma})$$

e.g. N_{higgs} >100 counts/month:

D. d'Enterria et al., arXiv:1510.08141, arXiv:1602.08088, arXiv:1712.10104

Fixed-target collisions with FCC beams

- ◆ Fixed-target collisions with FCC (or LHC) p or Pb beams could be realized with either:
 - Beam extraction, fast (magnet) or slow (bent crystals technique)
 - Internal gas detectors, à la LHCb-SMOG

	p@LHC	Pb@LHC	p@FCC	Pb@FCC
Nucleon–Nucleon c.m.s. energy ($\sqrt{s_{ m NN}}=$	114.6	72.0	306.6	192.5
$\sqrt{2E_bm_N})$ [GeV]				
$\Delta y_{\mathrm{c.m.s.}}^{\mathrm{lab}} = \ln(\gamma_{\mathrm{c.m.s.}}^{\mathrm{lab}} + \sqrt{(\gamma_{\mathrm{c.m.s.}}^{\mathrm{lab}})^2 - 1})$	4.80	4.33	5.79	5.32

- Luminosity and physics opportunities for LHC case are discussed in detail in the context of the AFTER@LHC proposal
- Heavy ion studies:
 - > c.m.s. energy similar to RHIC energies
 - much larger luminosity and access to (very) backward rapidity region would enable unique and high-precision studies, e.g. related to quarkonium production and its cold and hot nuclear matter effects

AFTER: see e.g. S. J. Brodsky, et al., Phys. Rept. 522 (2013) 239–255, arXiv:1202.6585

High-density QCD in the final state: the Quark Gluon Plasma

14 12 1.5 T/T_{c} Partonic degrees of freedom

- Lattice QCD: phase transition at T_c~155 MeV
 - → Quark-Gluon Plasma
- Color deconfinement and chiral symmetry restoration

Unique opportunity to study in the laboratory

spatially-extended multi-particle QCD system

J/ψ : from suppression to enhancement?

• Quarkonium suppression in AA wrt pp(xN_{coll}) observed at SPS, RHIC and LHC is attributed to color-screening of the $Q\bar{Q}$ potential in QGP

$$R_{AA} = AA/(pp \times N_{coll}) < 1$$

- At LHC, smaller J/ψ suppression wrt RHIC suggests novel effect: "regeneration" from deconfined c and c quarks in the QGP
 - At FCC, the large charm yield from hard scattering + thermal production may lead to a J/ψ enhancement (R_{AA}>1)
 - J/ψ yield could be sensitive to secondary/thermal charm production

K. Zhou et al., arXiv:1602.01667

Y: full suppression or enhancement?

- Color-screening suppression reduced for tightly-bound states
- Y(1S) R_{AA}~0.5 at LHC: consistent with suppression of higher states only (2S and 3S, that feed-down to the 1S)
- ◆ Y(1S) would melt when T > 350 MeV, may be reached only at FCC.
- However, the large bb yields could lead to a first observation of regeneration in the bottomonium sector (Y R_{AA}>1)

G. Aarts et al, JHEP 07 (2014) 097

A.Andronic, et al., based on JPG38 (2011) 124081

An interesting physics case for top: boosted color singlets in the QGP

1) Testing the time evolution of the

QGP density

Estimate of the "start time" of energy loss: reaches 2-3 fm/c for top p_T ~0.5-1 TeV/c

Apolinario, Milhano, Salam, Salgado, arXiv:1711.03105

An interesting physics case for top: boosted color singlets in the QGP

2) Testing the role of color coherence

q-qbar with small opening angle; seen as color-singlet by the medium, **no interaction expected** Medium induces decoherence, opening angle increases → energy loss of color-octet's in the medium

Cosmic-rays MC tuning with FCC (Pb-

FCC pA and AA probe ankle-energy and provides strong constraints for hadronic Monte Carlos for UHECR (p,Fe+Air)

Detector considerations

- So far we concentrated on the physics case, no studies for detector design yet
- Before considering a dedicated detector, we should consider the possibilities offered by the pp-dedicated detectors
- Possibly giving inputs for specific features
- Examples:
 - Robust tracking with dN_{ch}/dη ~ 3500
 - \rightarrow Low-p_T tracking (<500 MeV) \rightarrow run at lower B field (if necessary)?
 - ➤ Hadron ID → to be studied (Silicon dE/dx, TOF, RICH ...)
 - Forward coverage for small-x studies (already foreseen for pp)
 - > Jet, W/Z, top reconstruction (already foreseen for pp)