Rare top quark decays at the FCC-hh

Based on arXiv:1712.06332 [Published in Eur.Phys.J. C78 (2018) no.3, 214]

Andreas Papaefstathiou & Gilberto Tetlalmatzi-Xolocotzi

UNIVERSITY OF AMSTERDAM

[FCC Week 2018, 9-13 April, Amsterdam, NL]

introduction

(or: $y_t \simeq 1$)

 $\begin{array}{l} hh \rightarrow (b\bar{b})(\gamma\gamma) \\ \textbf{the top}_{h\bar{h}} \underbrace{\textbf{quark}}_{(b\bar{b})}(\underbrace{\textbf{w}}_{W} \underbrace{\textbf{quite likely intimately}}_{t\bar{t}} \\ \textbf{linked to}_{h\bar{h}} \underbrace{\textbf{Electro}}_{(b\bar{b})}(\underbrace{\textbf{w}}_{b\bar{b}}) \\ \end{array}$

introduction

the top quark carries <u>colour charge</u> + decays <u>before</u> hadronisation (mostly) through $t \rightarrow Wb$,

<u>unique</u> amongst quarks.

+ QCD pair production with <u>large cross sections</u> @ hadron colliders:

LHC exploration (ATLAS)

cross section: $\sigma(t\bar{t})_{LHC} \sim \mathcal{O}(1 \text{ nb})$

Search for flavour-changing neutral current top quark decays t->qZ at 13 TeV NEW	Submitted to JHEP	26-MAR-18	13	36 fb ⁻¹
Measurements of ttbar+njets differential cross-sections in the I+jets channel at 13 TeV	Submitted to JHEP	19-FEB-18	13	3.2 fb ⁻¹
Differential ttbar cross-section all-hadronic boosted 13 TeV	Submitted to PRD	06-JAN-18	13	36 fb ⁻¹
inclusive ttbar cross section in the lepton+jets channel at 8 TeV	Submitted to EPJC	19-DEC-17	8	20.3 fb ⁻¹
Measurement of tW single top differential cross-sections at 13 TeV	Eur. Phys. J. C 78 (2018) 186	05-DEC-17	13	36 fb ⁻¹
tZ cross section in the trilepton channel at 13 TeV	Submitted to PLB	10-OCT-17	13	36 fb ⁻¹
Dilepton differential ttbar cross-sections at 8 TeV and pole mass determination	Eur. Phys. J. C 77 (2017) 804	27-SEP-17	8	20 fb ⁻¹
ATLAS+CMS ttbar Charge asymmetry combination	Submitted to JHEP	15-SEP-17	7, 8	5 fb ⁻¹ , 20 fb ⁻¹
Measurement of the top quark width at 8 TeV	Eur. Phys. J. C 78 (2018) 129	13-SEP-17	8	20.2 fb ⁻¹
Measurement of the lepton+jets ttbar differential cross section at 13 TeV	JHEP 11 (2017) 191	02-AUG-17	13	3.2 fb ⁻¹
Single top anomalous couplings 3 angle fit at 8 TeV	JHEP 12 (2017) 017	17-JUL-17	8	20 fb ⁻¹
Search FCNC t->h(125) q, h(125)->gammagamma	JHEP 10 (2017) 129	05-JUL-17	13	36.1 fb ⁻¹

[ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults]

LHC exploration (ATLAS)

cross section: $\sigma(t\bar{t})_{LHC} \sim \mathcal{O}(1 \text{ nb})$

Search for flavour-changing neutral current top quark decays t->qZ at 13 TeV NEW	Submitted to JHEP	26-MAR-18	13	36 fb ⁻¹
Measurements of ttbar+njets differential cross-sections in the I+jets channel at 13 TeV	Submitted to JHEP	19-FEB-18	13	3.2 fb ⁻¹
Differential ttbar cross-section all-hadronic boosted 13 TeV	Submitted to PRD	06-JAN-18	13	36 fb ⁻¹
inclusive ttbar cross section in the lepton+jets channel at 8 TeV	Submitted to EPJC	19-DEC-17	8	20.3 fb ⁻¹
Measurement of tW single top differential cross-sections at 13 TeV	Eur. Phys. J. C 78 (2018) 186	05-DEC-17	13	36 fb ⁻¹
tZ cross section in the trilepton channel at 13 TeV	Submitted to PLB	10-OCT-17	13	36 fb ⁻¹
Dilepton differential ttbar cross-sections at 8 TeV and pole mass determination	Eur. Phys. J. C 77 (2017) 804	27-SEP-17	8	20 fb ⁻¹
ATLAS+CMS ttbar Charge asymmetry combination	Submitted to JHEP	15-SEP-17	7, 8	5 fb ⁻¹ , 20 fb ⁻¹
Measurement of the top quark width at 8 TeV	Eur. Phys. J. C 78 (2018) 129	13-SEP-17	8	20.2 fb ⁻¹
Measurement of the lepton+jets ttbar differential cross section at 13 TeV	JHEP 11 (2017) 191	02-AUG-17	13	3.2 fb ⁻¹
Single top anomalous couplings 3 angle fit at 8 TeV	JHEP 12 (2017) 017	17-JUL-17	8	20 fb ⁻¹
Search FCNC t->h(125) q, h(125)->gammagamma	JHEP 10 (2017) 129	05-JUL-17	13	36.1 fb ⁻¹

[ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults]

LHC exploration (CMS)

85	TOP-17-002	Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at $\sqrt{s} = 13$ TeV
84	TOP-16-014	Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at $\sqrt{s} = 13$ TeV
83	TOP-16-020	Measurement of the associated production of a single top quark and a Z boson in pp collisions at $\sqrt{s}=$ 13 TeV
82	TOP-17-003	Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at $\sqrt{s}=$ 13 TeV
81	TOP-16-023	Measurement of the inclusive $t\bar{t}$ cross section in pp collisions at $\sqrt{s}=$ 5.02 TeV using final states with at least one charged lepton
80	<u>TOP-17-005</u>	Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at \sqrt{s} = 13 TeV
79	<u>TOP-17-009</u>	Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at \sqrt{s} = 13 TeV
78	TOP-15-016	Combination of inclusive and differential t $ar{t}$ charge asymmetry measurements using ATLAS and CMS data at $\sqrt{s}=$ 7 and 8 TeV
77	TOP-16-007	Measurement of normalized differential $tar{t}$ cross sections in the dilepton channel from pp collisions at $\sqrt{s}=$ 13 TeV
76	TOP-14-008	Measurement of the semileptonic t \bar{t} + γ production cross section in pp collisions at \sqrt{s} = 8 TeV
75	<u>TOP-16-010</u>	Measurements of $t\bar{t}$ cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at $\sqrt{s} = 13$ TeV

[CMS: http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP/index.html]

LHC exploration (CMS)

85	TOP-17-002	Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at $\sqrt{s} = 13$ TeV
84	<u>TOP-16-014</u>	Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at $\sqrt{s} = 13$ TeV
83	<u>TOP-16-020</u>	Measurement of the associated production of a single top quark and a Z boson in pp collisions at $\sqrt{s}=$ 13 TeV
82	<u>TOP-17-003</u>	Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at $\sqrt{s}=$ 13 TeV
81	TOP-16-023	Measurement of the inclusive tt cross section in pp collisions at $\sqrt{s}=$ 5.02 TeV using final states with at least one charged lepton
80	TOP-17-005	Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at \sqrt{s} = 13 TeV
79	<u>TOP-17-009</u>	Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at \sqrt{s} = 13 TeV
78	TOP-15-016	Combination of inclusive and differential ${ m tar t}$ charge asymmetry measurements using ATLAS and CMS data at $\sqrt{s}=$ 7 and 8 TeV
77	TOP-16-007	Measurement of normalized differential $ ext{t}^{ ilde{ ext{t}}}$ cross sections in the dilepton channel from pp collisions at $\sqrt{s}=$ 13 TeV
76	TOP-14-008	Measurement of the semileptonic $t\bar{t}$ + γ production cross section in pp collisions at \sqrt{s} = 8 TeV
75	<u>TOP-16-010</u>	Measurements of $t\bar{t}$ cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at $\sqrt{s} = 13$ TeV

[CMS: http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP/index.html]

top quarks at pp@100 TeV

pp@100 TeV cross section: $\sigma(t\bar{t})_{\rm FCC-hh} \sim \mathcal{O}(35 \text{ nb})$

- \Rightarrow ~10¹² top quarks produced in O(10) ab⁻¹, \Rightarrow excellent opportunity for:
- <u>tests of QCD</u>: through <u>production mechanism</u>.
- + <u>electro-weak</u> (or <u>new</u>) physics: through <u>decays</u>.

top quarks at pp@100 TeV

pp@100 TeV cross section: $\sigma(t\bar{t})_{\rm FCC-hh} \sim \mathcal{O}(35 \text{ nb})$

- \Rightarrow ~10¹² top quarks produced in O(10) ab⁻¹, \Rightarrow excellent opportunity for:
- <u>tests of QCD</u>: through <u>production mechanism</u>.
- + <u>electro-weak</u> (or <u>new</u>) physics: through <u>decays</u>.
 our focus in this talk

most top decays highly suppressed in SM: \Rightarrow an excellent window to probe new phenomena.

e.g.: "CKM" decays:

most top decays highly suppressed in SM: \Rightarrow an excellent window to probe new phenomena.

e.g.: "CKM" decays:

e.g.: "radiative" decays:

Channel	Br
	(SM)
$t \to bWg$	0.3
	$(E_g > 10 \text{ GeV})$
$t \to bW\gamma$	$3.5 \cdot 10^{-3}$
	$(E_{\gamma} > 10 \text{ GeV})$
$t \to bWZ$	$2 \cdot 10^{-6}$
$t \to bWH$	$1.8 \cdot 10^{-9}$

[Mele, hep-ph/0003064], [Mahlon, hep-ph/9810485], [Han, Ruiz, 1312.3324]

e.g.: "radiative" decays:

Channel	Br
	(SM)
$t \to bWg$	0.3
	$(E_g > 10 \text{ GeV})$
$t \to bW\gamma$	$3.5 \cdot 10^{-3}$
	$(E_{\gamma} > 10 \text{ GeV})$
$t \to bWZ$	$2 \cdot 10^{-6}$
$t \rightarrow bWH$	$\overline{1.8\cdot10^{-9}}$

[Mele, hep-ph/0003064], [Mahlon, hep-ph/9810485], [Han, Ruiz, 1312.3324]

e.g.: "exotic" decays:

[see backup slides for references]

Channel	Br
	(SM)
cWW	$1.3 \cdot 10^{-13}$
$u\gamma$	$(3.7^{+2.7}_{-2.3}) \cdot 10^{-16}$
	10
$c\gamma$	$5 \cdot 10^{-13} [7]$
	$\left[\begin{array}{c} (4.6^{+2.0}_{-1.2}) \cdot 10^{-14} \ [6] \\ \end{array}\right]$
ug	$(3.7^{+2.6}_{-2.3}) \cdot 10^{-14} [6]$
	(4.0+2.4) 10-12 [a]
cg	$(4.6^{+2.1}_{-1.2}) \cdot 10^{-12} [6]$
	$2 10^{-17}$ [12]
uZ	0.10 [13]
cZ	$1.3 \cdot 10^{-13}$ [9 2]
02	$10^{-14} [13]$
uH	$2.0 \cdot 10^{-17}$ [13]
cH	$0.4605 \cdot 10^{-13}$
	$m_H = 120 \text{ GeV} [12]$
	$0.3146 \cdot 10^{-13}$
	$m_H = 130 \text{ GeV} [12]$
$c\gamma\gamma$	$ < 10^{-16} [2]$

BRs ~ $10^{-12} - 10^{-17}$

e.g.: "exotic" decays:

[see backup slides for references]

Channel	Br
	(SM)
cWW	$1.3 \cdot 10^{-13}$
	1.0 10
	(2, -16)
$u\gamma$	$(3.7^{+2.1}_{-2.3}) \cdot 10^{-10}$
$c\gamma$	$5 \cdot 10^{-13}$ [7]
,	$(4.6^{+2.0}) \cdot 10^{-14}$ [6]
210	$(37^{\pm 2.8}) \cdot 10^{-14}$ [6]
ug	$[(3.7_{-2.3})^{+10}, [0]]$
	(1, 0+2, 1) $(1, 0-12, 10]$
cg	$(4.6^{+2.4}_{-1.2}) \cdot 10^{-12} [6]$
uZ	$8 \cdot 10^{-17} [13]$
cZ	$1.3 \cdot 10^{-13}$ [9, 2]
	$10^{-14} [13]$
	10 $[10]2.0 10^{-17} [12]$
ШП	$2.0 \cdot 10 [13]$
cH	$0.4605 \cdot 10^{-13}$
	$m_H = 120 \text{ GeV} [12]$
	$0.3146 \cdot 10^{-13}$
	$m_{11} = 130 \text{ GeV} [12]$
	$ = 100 \ 000 \ [12] $
$c\gamma\gamma$	$ < 10^{-1} 2 $

BRs ~ $10^{-12} - 10^{-17}$

 $t \rightarrow bWZ$ (SM) ~ 2 × 10⁻⁶

radiative decay with a Z boson: $t \rightarrow bWZ$

[MadGraph5_aMCatNLO]

radiative decay with a Z boson: $t \rightarrow bWZ$

[MadGraph5_aMCatNLO]

additional diagrams: t \rightarrow bWZ \rightarrow b($\mu^+\nu_{\mu}$)($\nu\bar{\nu}$)

[MadGraph5_aMCatNLO]

$t \rightarrow bWZ$, QCD corrections

[A.P., Tetlalmatzi-Xolocotzi, arXiv:1712.06332]

challenges for (SM) t \rightarrow bWZ

[A.P., Tetlalmatzi-Xolocotzi, arXiv:1712.06332]

signal decay is very close to threshold!:

 $m_t (\sim 173.1 \text{ GeV}) \simeq m_b + m_W + m_Z (\sim 175.8 \text{ GeV})$

 $\implies only possible due to off-shell particles: SM BR ~2x10^{-6}$

 \longrightarrow b-jets are <u>softer in signal</u> than backgrounds.

analysis for (SM) $t \rightarrow bWZ$

[A.P., Tetlalmatzi-Xolocotzi, arXiv:1712.06332]

we looked at two final states:

$$pp \rightarrow t\bar{t} \rightarrow (b\ell'^+ \nu_\ell \ell^+ \ell^-)(\bar{b}jj)$$
 (3-lepton)
 $pp \rightarrow t\bar{t} \rightarrow (bjj\mu^+\mu^-)(\bar{b}jj)$ (2-lepton)

and only backgrounds arising from: $pp \rightarrow t\bar{t}Z$

 $\implies both analyses less than 1\sigma for SM@10/ab.$ $\implies challenging, even at FCC-hh!$

can a new charged heavy scalar enhance the BR?

450

500

550

600

<u>NO!</u> only up to **BR** ~ 2 x **BR(SM)**.

350

300

2.00

250

400

 $M_{H^{\pm}}$ [GeV]

heavy scalar mass

 $t \rightarrow ch$ / $BR(SM) \sim 10^{-13}$

[see appendix for diagrams]

FCNC decay to Higgs + charm

[A.P., Tetlalmatzi-Xolocotzi, arXiv:1712.06332]

flavour-changing neutral current through:

$$\mathcal{L}_{thc} = \lambda_{ct}^h \bar{Q}_c H q_t + \text{h.c.}$$
 [here: real & symmetric couplings]

• LHC: top pair production, current best constraints:

	ATLAS ($h \rightarrow \gamma \gamma$)	CMS (h→bb̄)	
BR <	0.22%	0.47%	

[13 TeV, ~36 fb⁻¹]

***note**: <u>no c-tagging employed</u>: constrain combination of $t \rightarrow hc$ and $t \rightarrow hu$.

• High-luminosity LHC projection: **BR** < 0.02% (**h** \rightarrow $\gamma\gamma$).

$t \rightarrow hc @ FCC-hh$

[A.P., Tetlalmatzi-Xolocotzi, arXiv:1712.06332]

look at $pp \to t\bar{t} \to (hc)\bar{t}$.

[and charge conjugate]

- h → γγ + two signal regions: (i) fully hadronic or (ii) semileptonic decays of the "non-signal" top.
- MG5_aMC@NLO [parton level] + HERWIG 7 [parton shower/non-pert. effects].
- two analyses: (i) with or (ii) without c-tagging. [see appendix for details]
- (very) rough estimates of systematics by rescaling backgrounds by a factor *α*.

constraints for BR(t \rightarrow hc) @ FCC-hh

conclusions

- ~10¹² top quarks produced over the FCC-hh lifetime: an excellent opportunity to study its properties.
- in particular: **rare top decays**.
- we have examined $t \rightarrow bWZ$ and $t \rightarrow hc$ in our study.
- the SM radiative decay **t** → **b**WZ will be difficult to observe and heavy scalars do not increase the rate enough.
- for t → hc: FCC-hh better than HL-LHC by at least an order of magnitude.
- **<u>outlook</u>**: what can the FCC-hh deliver on **other** rare decays?

Thanks!

appendix

analysis summary: t → hc @ FCC-hh

[A.P., Tetlalmatzi-Xolocotzi, arXiv:1712.06332]

• signal (λ =0.1) and background **initial** cross sections:

Process	$\sigma_{ m gen}^{ m had.}$ [pb]	$\sigma_{ m gen}^{ m s.l.}$ [pb]
$pp \rightarrow t\bar{t} \rightarrow (hc)\bar{t} + h.c.$	0.332	0.122
$pp \rightarrow t\bar{t}h$	0.044	0.030
$pp ightarrow hjjW^{\pm}$	0.022	0.070
$pp \rightarrow t\bar{t}\gamma\gamma$	0.042	0.028
$pp ightarrow \gamma \gamma j j W^\pm$	1.294	0.424
	_	
	$t \rightarrow bjj$	$t \to b \ell \bar{\nu}_{\ell}$

analysis summary: t \rightarrow hc @ FCC-hh

[A.P., Tetlalmatzi-Xolocotzi, arXiv:1712.06332]

summary of analysis, "hadronic" or "semi-leptonic" analysis:

exactly one <i>b</i> -jet, $p_T > 25$ GeV, $ \eta < 2.5$,				
$P_{b \to b} = 0.7, P_{c \to b} = 0.1, P_{l \to b} = 0.01,$				
\geq 2 photons, p_T >	\geq 2 photons, p_T > 25 GeV, $ \eta $ < 2.5,			
hadronic:	semi-leptonic:			
\geq 1 light jets,	$\geq 1 \text{ leptons, } p_T > 25 \text{ GeV,} \\ \eta < 2.5,$			
top: combine <i>b</i> -jet + 1, 2 light jets.	solve for p_V^z using mass constraint.			
with <i>c</i> -tagging:	no <i>c</i> -tagging:			
$P_{c \to c} = 0.2, P_{l \to c} = 0.005,$ $P_{b \to c} = 0.125.$	no charm jets.			
$m_{\rm top, \ reco} \in [150, 200] \ { m GeV}.$				
$m_{\gamma\gamma c} \in [160, 190]$ GeV,				

analysis results: t \rightarrow hc @ FCC-hh

[A.P., Tetlalmatzi-Xolocotzi, arXiv:1712.06332]

summary of resulting cross sections, "hadronic" or "semileptonic" analysis:

$\mathscr{L} = 10 \text{ a}$	b^{-1}		$\mathcal{L} = 10$	$) ab^{-1}$	
Process	$N_{\rm c-tag}^{\rm had.}$	$N_{\rm c-tag}^{\rm s.l.}$	Process	$N_{\rm no\ c-tag}^{\rm had.}$	$N_{\rm no\ c-tag}^{\rm s.l.}$
$pp \rightarrow t\bar{t} \rightarrow (hc)\bar{t} + h.c.$	22952	10260	$pp \rightarrow t\bar{t} \rightarrow (hc)\bar{t} + h.c.$	191871	61124
$pp \rightarrow t\bar{t}h$	1816	689	$pp \rightarrow t\bar{t}h$	26533	6962
$pp ightarrow hjjW^{\pm}$	7	1	$pp ightarrow hjjW^{\pm}$	66	19
$pp ightarrow \gamma \gamma j j W^\pm$	211	2	$pp ightarrow \gamma \gamma j j W^\pm$	7130	164
$pp ightarrow t \overline{t} \gamma \gamma$	107	39	$pp ightarrow t \overline{t} \gamma \gamma$	1598	478
$\overline{t} \rightarrow \overline{b}jj$		$\overline{t} \to \overline{t}$	$\bar{\rho}\ell\bar{ u}_\ell$		

constraints: t → hc @ FCC-hh

[A.P., Tetlalmatzi-Xolocotzi, arXiv:1712.06332]

summary of resulting cross sections, "hadronic" or "semileptonic" analysis:

with <i>c</i> -tagging:							
analysis:	hadr.,	semi-lept.					
$\lambda_{ct}^h \times 10^{-3}$	(6.42, 10.15, 19.40)	(7.40, 9.52, 17.08)					
BR in 10 ⁻³ %	(1.08, 2.70, 9.91)	(1.44, 2.39, 7.69)					
no <i>c</i> -tagging:							
$\lambda_{ct}^h \times 10^{-3}$	(4.43, 13.61, 27.15)	(5.38, 11.32, 22.36)					
BR in 10 ⁻³ %	(0.52, 4.99, 19.42)	(0.76, 3.38, 13.17)					
systematics: $\alpha = (0, 5\%, 20\%)$							

Feynman graphs for $t \rightarrow ch$

[Mele, hep-ph/0003064]

rare top decays summary

Input $\sigma = 35$ nb and $\int \mathcal{L}dt = 10^4 \text{ fb}^{-1}$

	D		D		D	
Channel	Br	# events	Br	# events	Br	# events
	(SM)	(SM)	(THDM)	(THDM)	(MSSM)	(MSSM)
bW	1	$35 \cdot 10^{10}$				
eW	$1.6.10^{-3}$	$5.6 \cdot 10^8$	$\sim 10^{-3}$	$\sim 35.10^8$	$10^{-3} - 10^{-2}$	$35.(10^810^9)$
377	[1]	0.0 10	[0]	0.0 10		0.0 (10 10)
1117		05 107				
	$\sim 10^{-1} [1]$	$3.5 \cdot 10^{-7}$				
	$(\sim 5.5 \cdot 10^{-6} \ [2])$	$(1.9 \cdot 10^{\circ})$				
bWg	0.3	$1.05 \cdot 10^{11}$				
	[1, 3]					
$bW\gamma$	$3.5 \cdot 10^{-3}$	$1.225 \cdot 10^{9}$				
	$(E_{\gamma} > 10 \text{ GeV})$ [1]					
bWZ	$2 \cdot 10^{-6}$	$7 \cdot 10^5$	$\simeq 10^{-4}$	$3.5 \cdot 10^{7}$		
	[1]		[2]			
bWH	$1.80 \cdot 10^{-9}$	630				
	[4]					
cWW	$1.3 \cdot 10^{-13}$	0.0455	$10^{-4} - 10^{-3}$	$3.5 \cdot (10^7 - 10^8)$		
	[5]			[2]		
$u\gamma$	$(3.7^{+2.7}_{-2.3}) \cdot 10^{-16}$ [6]	$1.295 \cdot 10^{-4}$			$2 \cdot 10^{-6}$ [13]	$7 \cdot 10^5$
$c\gamma$	$5 \cdot 10^{-13}$ [7]	0.175	$\mathcal{O}(10^{-6})$ [8]	$\mathcal{O}(3.5\cdot 10^5)$	$\mathcal{O}(10^{-7})$ [2]	$\mathcal{O}(3.5\cdot 10^4)$
,	$(4.6^{+2.0}_{-1.2}) \cdot 10^{-14}$ [6]	0.0161				
ug	$(3.7^{+2.8}_{-2.3}) \cdot 10^{-14}$ [6]	0.01295			$8 \cdot 10^{-5}$ [13]	$2.8 \cdot 10^7$
cg	$(4.6^{+2.4}_{-1.2}) \cdot 10^{-12} \ [6]$	1.61	10^{-4} [13]	$3.5 \cdot 10^7$	$8.0 \cdot 10^{-5}$ [13]	$2.8 \cdot 10^7$
uZ	$8 \cdot 10^{-17} [13]$	$2.8 \cdot 10^{-5}$			$2.0 \cdot 10^{-6}$ [13]	$7.0 \cdot 10^5$
cZ	$1.3 \cdot 10^{-13} [9, 2]$	0.0455	10^{-7} [13]	$3.5 \cdot 10^4$	$2 \cdot 10^{-6}$ [13]	$7.0 \cdot 10^{5}$
	10^{-14} [13]	$3.5 \cdot 10^{-3}$				
uH	$2.0 \cdot 10^{-17}$ [13]	$7.0 \cdot 10^{-6}$	$5.5 \cdot 10^{-6}$ [13]	$1.9 \cdot 10^{6}$	10^{-5} [13]	$3.5 \cdot 10^{6}$
cH	$0.4605 \cdot 10^{-13}$	0.01612	$1.5 \cdot 10^{-5}$ [13]	$5.25 \cdot 10^{6}$	10^{-5} [13]	$3.5 \cdot 10^{6}$
	$m_{\mu} = 120 \text{ GeV} [12]$					
	$0.3146 \cdot 10^{-13}$	0.01101				
	$m_{\rm H} = 120 \ {\rm CoV} \ [19]$	0.01101				
	$m_H - 150 \text{ GeV} [12]$	0 F 10-5	10-4 [0]	0 F 107	< 10-8 [0]	< 9 F 103
$c\gamma\gamma$	< 10 ** [2]	3.5 · 10 °	$\sim 10^{-1}$ [2]	$\sim 3.5 \cdot 10^{\circ}$	< 10 ~ [2]	$< 3.5 \cdot 10^{\circ}$
cZZ			$ 10^{-3} - 10^{-3} 2 $	$ 3.5 \cdot 10^{\circ} - 3.5 \cdot 10^{\circ} $		

29

rare top decays summary (notes)

- The determination of $Br(t \rightarrow bWH)$ shown in the Table was done considering a virtual W and $m_H = 125.5$ GeV.
- In models with extra Q = 2/3 singlets the following bound is obtained $Br(t \rightarrow ug) = 1.5 \cdot 10^{-7}$ [13], for this case # events = 52500.
- Other BSM bounds for $Br(t \to c\gamma)$: $\mathcal{O}(10^{-6})$ (Warped Extra Dimensions [10]).
- Current experimental bounds for $Br(t \to c\gamma)$ and $Br(t \to u\gamma)$ from CMS: $Br(t \to c\gamma) < 1.7 \cdot 10^{-3}$ and $Br(t \to u\gamma) < 1.3 \cdot 10^{-4}$ [11].
- In models with extra Q = 2/3 singlets $Br(t \rightarrow uZ) = 1.1 \cdot 10^{-4}$ [13], for this case # events = $3.85 \cdot 10^7$.
- In non minimal models with R parity violation it is possible to have $Br(t \to cZ) = 3 \cdot 10^{-5}$ and consequently # events $= 1.05 \cdot 10^{7}$.
- Other reference for the SM calculation of $Br(t \to hc)$ commonly quoted in the literature is [13] $Br(t \to hc) = 3.5 \cdot 10^{-15}$. See also: [14].
- Current experimental (observed) bound for $Br(t \to hc)$ from Atlas: $Br(t \to hc) < 0.46\%$ [15].
- In models with extra Q = 2/3 singlets the following bound is obtained $Br(t \to hu) = 4.1 \cdot 10^{-5}$ [13] leading to # events $= 1.435 \cdot 10^{7}$.
- Current experimental (observed) bound for $Br(t \rightarrow hu)$ from Atlas: $Br(t \rightarrow hu) < 0.45\%$ [15].

rare top decays summary (refs)

References

- [1] B. Mele, [arXiv:hep-ph/0003064]
- [2] J.L. Diaz-Cruz, R. Gaitan-Lozano, G. Lopez-Castro and C.E. Pagliarone, Phys.Rev. D77 (2008) 094010, [arXiv:0712.3782].
- [3] G. Mahlon, [hep-ph/9810485].
- [4] T. Han and R. Ruiz, Phys. Rev. D 89, 074045 (2014), [arXiv:1312.3324].
- [5] E. Jenkins, Phys.Rev.D56:458-466,1997, [arXiv:hep-ph/9612211v2].
- [6] J. A. Aguilar-Saavedra, B. M. Nobre, Phys.Lett.B553:251-260,2003, [arXiv:hep-ph/0210360].
- [7] J.L. Diaz-Cruz, R. Martinez, M.A. Perez, A. Rosado, Phys.Rev. D41 (1990) 891-894.
- [8] R. Gaitán, E. A. Garces, R. Martinez, J. Halim-Montes-de-Oca, Phys. Rev. D 94, 094038 (2016), [arXiv:1503.04391].
- [9] D. Atwood, L. Reina, A. Soni, Phys.Rev.D55:3156-3176,1997, [hep-ph/9609279v1].
- [10] T. Gao, T. Feng and J. Chen, JHEP 1302 (2013) 029, [arXiv:1303.0082].
- [11] CMS Collaboration, JHEP 1604 (2016) 035, [arXiv:1511.03951].
- [12] B. Mele, S. Petrarca, A. Soddu, Phys.Lett.B435:401-406,1998, [hepph/9805498].
- [13] J. A. Aguilar-Saavedra, Acta Phys.Polon.B35:2695-2710,2004, [hepph/0409342].
- [14] C. Zhang and F. Maltoni, Phys. Rev. D 88 (2013) 054005, [hepph/1305.7386].
- [15] Atlas Collaboration, JHEP 12 (2015) 061, [arXiv:1509.06047].