Development of Cooling and Ventilation systems for FCC and HE-LHC

M. Nonis, G. Peon – CERN EN Department / CV Group

FCC Week, 11th April 2018

Content

- Ventilation
 - FCC tunnel hh & ee
 - Additional Safety
 Constraints and solutions
 on Smoke Extraction
 - HE-LHC
 - General description of the ventilation system
 - In case of smoke detection

- Cooling
 - FCC Cooling towers
 - General solution/architecture
 - Reject water treatment
 - Makeup water
 - Environmental constraints
- Other cooling systems:
 - Demineralised water
 - Chilled water

Conclusions

Ventilation of the FCC tunnel

			From	То
Geometry	Tunnel Diameter	[m]	6	5.5
	Cross section for air passage	[m ²]	17.7	15.2
	Volume of a 440 m compartment	[m ³]	7788	6688
Flushing ti	me	[h]	1.9	1.6
Max. air ve	locity	[m/s]	0.78	0.91

Ventilation of the FCC tunnel: Heat Loads

• FCC-hh:

 The heat loads maximum values about 240 kW for sectors CD and JK – no change

Air flow from both sides, 2 x 25000 m³/h

FCC-ee

 The heat loads max. values about 500 kW for sectors CD and JK (mainly from magnets and lumped absorbers for SR)

- A dedicated cooling of the air is needed,
 - by chilled water from 2 points of the sector,
 - → DN80 insulated pipes in the tunnel or
 - by refrigerating machines in alcoves,
 - condenser cooled by demi water,
 - many drawbacks (room, radiation environment, maintenance,...)

Ventilation: new safety constraints

- Smoke extraction, recent additional requirements:
 - Fast reaction from the smoke extraction system
 - Fresh Air Supply in the affected and neighbouring compartments
 - About 7000 m³/h in the affected one(s) and 3500 m³/h in the two neighbouring ones, the same for the extraction
 - \rightarrow from 2 x 25000 m³/h to 2 x 31500 m³/h

FCC tunnel ventilation in normal conditions

- Ventilation scenario in 2017
- To reduce the smoke extraction system reaction time:
 - One fan would be on, extracting air from the other end of the sector
 - Smoke extraction duct underpressurized, ready for an emergency situation

Ventilation of a compartment (I)

In normal conditions

Ventilation of a compartment (II)

In case of smoke

FCC Sector: Ventilation in case of smoke

Ventilation of the LHC in normal operation

- At present in LHC, 100% fresh air is supplied at the even points and extracted at the odd points,
 - Each unit at one point is back-up of the other unit

Ventilation of the HE-LHC in normal operation

- For energy savings, the air in HE-LHC circulates around the accelerator:
 - The exhaust air from a sector is treated and sent back to the adjacent sector
 - As supply and extraction is done at each point, a unit plus its back-up needs to be added at each point

Ventilation of the HE-LHC in case of smoke detection

⊅3800

Ø350

- The doors of the affected and neighboring compartments close.
- The extraction for the affected sector is stopped and the backup air handling unit supplies air to pressurize the sector from both points.
- The emergency extraction unit extracts a small flow rate from the affected compartments to maintain the pressure cascade.

Cooling

- Cooling
 - FCC Cooling towers
 - General solution/architecture
 - Reject water treatment
 - Makeup water
 - Environmental constraints
- Other cooling systems:
 - Demineralised water
 - Chilled water

Cooling towers needs in FCC-ee

Heat Load (MW) ee

No. of cells x P(MW)/cell for ee

Cooling towers needs in FCC-hh

No. of cells x P(MW)/cell for hh

Reduction in Blowdown and Make-up water Consumption

Annual Rejects: 285700.3 m³

Conductivity: 14000 µS/cm

- Calculations show that, for heat loads of FCC-hh, the evaporated water in the cooling towers amounts to about 3 Mm³ / year
- In case of Classical Wet Cooling Tower, the overall water consumption will be of 5 Mm³ / year with a blowdown of 2 Mm³ / year
- Two other options are proposed:
 - Make-up with demineralised water (0.1 μS/cm)
 - For secondary cooling circuits, a demineralised water production plant is needed for each point. The same plant can be used for make up water
 - Stainless steel circuits and mixing are needed
 - 20% Reduction of overall water consumption
 - Recycling blowdown water, reducing TDS by Reverse Osmosis, to 20 μS/cm
 - Dedicated process is needed
 - 34 % Reduction of overall water consumption

Conductivity: 850 µS/cm

Annual Raw Water: 3361332.7 m³ Conductivity: 333 µS/cm Annual Blowdown: 1428501.6 m³ Recycling blowdown water Annual Ro Permeate: 1142801.3 m³ Conductivity: 20 µS/cm

Make-up with demineralised water

Cooling Towers: Regular Cleaning

- Following applicable laws and standards, actions taken for regular cleaning:
 - Preventive maintenance:
 - Annual Mechanical Cleaning for accessible surfaces,
 - Annual Chemical Cleaning for all surfaces,
 - Chemical water treatment.
 - Monitoring plan: monthly analysis of bacteria concentration in the water.
- When annual cleaning is not possible for technical or economical reasons, compensatory measures are taken:
 - Keep under control phenomena like biofilm or deposits (scale formation) or bacteria nutritional elements,
 - Keep bacteria concentration low,
 - Survey the installation.

Double Cooling Tower Circuit, Option 1

4 season back-up solution

Double Cooling Tower Circuit

Wet Bulb T (ºC)		Avg	Std	Min	Max	95% L	95% H
	Dec.	1.6	3.6	-13.1	12	8.7	-5.6
Cold Season	Jan.	0.6	3.7	-18.7	11.6	8.1	-6.9
Geason	Feb.	0.9	3.8	-17.2	10.9	8.6	-6.8
Mid Season	Mar.	3.9	3.7	-10.5	14.1	11.3	-3.5
	Apr.	6.8	3.3	-5.2	16.3	13.4	0.2
	Oct.	9.4	3.5	-4.6	17.7	16.3	2.4
	Nov.	4.4	3.6	-9.4	14.5	11.6	-2.9
	May	10.8	3.2	-0.3	20.4	17.2	4.4
Hot	Jun.	13.8	3.2	2.3	22.5	20.2	7.4
season	Jul.	15.6	2.8	5	22.6	21.1	10.1
	Aug	15.4	2.8	5.2	22.7	21	9.8
	Sept	12.7	3.1	1.1	21.4	18.8	6.8

From: Weather Conditions in the Geneva Area, Doubek, EDMS 1714932 v 1.0

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Normal CT	Maintenance	Maintenance	N _m +	N _m +	N _s	N _m +	N _m +	Maintenance				
Back up CT	N _W +			Maintenance	+1	+1	+1	+1	+1	Maintenance	Maintenance	N _W +

Constraints due to heights and depths

- Underground depth Point F, 400 m, (as in FCC week 2016):
 - static pressure 40 bars
 - separate circuits between surface & underground.
- Highest Altitude variation in sector IJ, 27 m:
 - 2.7 bar, pressure (10 bar in FCC week 2016)
 - reduced pressure in tunnel at manifold level,
 - No differential pressure reducer on each manifold

- Maximum Sector length in CD, DE, IJ and JK 9.5 km (1 km less than in FCC week 2016):
 - increase diameter to reduce pressure losses -> avoid use of booster pumps,
 - sectorization valves and connection to drain along the sector,
 - balancing of circuits more complicated,
 - inlet temperature fine tuning at equipment level (if needed).

FCC-ee Point		Total underground	Cryogenics	Experiments	RF	Tunnel left	Tunnel right
Α	P (MW)	15.5		0.5		7.3	7.3
	ND	400		100		500	500
C,K	P (MW)	21.0				9.9	11.1
	ND	450				500	600
D, J	P (MW)	23.0	1.8		21.2		
	ND	450	150		500		
E, I	P (MW)	21.4				11.1	10.3
	ND	450				600	600
G	P (MW)	14.7		0.5		7.1	7.1
	ND	350		100		500	500
FCC-hh Point	FCC-hh	Total underground	Cryogenics	Experiments	RF	Tunnel left	Tunnel right
Α	P [MW]	5.6	1.5	2.7		0.7	0.7
	ND	250	125	150		150	150
B,L	P [MW]	2.0		2.0			
				2.0			
	ND	200		200			
C,K	ND P [MW]		2.9			1.4	1.7
C,K		200	2.9 200			1.4	1.7
C,K E,I	P [MW]	200 6.0					
	P [MW]	200 6.0 250	200			200	200
	P [MW] ND P [MW]	200 6.0 250 5.8	200			200	200
E,I	P [MW] ND P [MW] ND	200 6.0 250 5.8 250	200 2.9 200	200		200 1.6 200	200 1.3 200
E,I	P [MW] ND P [MW] ND P [MW]	200 6.0 250 5.8 250 5.5	200 2.9 200 1.5	2.7	4.5	200 1.6 200 0.65	200 1.3 200 0.65

Underground Hydraulic Cooling Power and Diameters

FCC-ee Point	Cooling power [kW]	Flow rate [m³/h]	Number of chillers	Cooling power/ chiller [kW]
Α	1780	255	3	900
B,L	1500	215	3	800
C,K	1850	115	3	900
D,J	5760	827	4	2000
E,I	1860	267	3	1000
F	1490	214	3	800
G	3460	497	4	1200
Н	1490	214	3	800

Chilled Water
requirements

FCC-hh Point	Cooling power [kW]	Flow rate [m³/h]	Number of chillers	Cooling power/ chiller [kW]
A	4410	633	5	1100
B,L	2340	336	3	1200
C,K	4150	595	5	1100
D,J	1220	175	2	1200
E,I	4130	593	5	1100
F	1140	163	2	1200
G	4360	626	5	1100
Н	1480	212	3	750

CONCLUSIONS

- The ventilation system for the FCC has evolved to respond to the new requirements in terms of safety
- A first approach to the ventilation system for the HE-LHC has been designed, including a strategy in case of smoke in one compartment
- Cooling needs for FCC-ee and FCC-hh have been reviewed and a proposal for the cooling tower complex has been shown, it includes:
 - The needs in number and size of cells
 - Proposals to reduce water consumption and blowdown
 - Proposals for maintenance in case of long running periods
- Main parameters of Chilled and Demineralised water circuits have been described

THANK YOU FOR YOUR ATTENTION