FCC WEEK 2018 MSTERDAM, The Netherlands 09 - 13 APRIL fccw2018.web.cern.ch

Towards a Nb₃Sn conductor for FCC Material development and electromechanical studies

Florin BUTA, Luc GAMPERLE, Christian BARTH, José FERRADAS, Carmine SENATORE

Group of Applied Superconductivity Department of Quantum Matter Physics University of Geneva, Switzerland

http://supra.unige.ch

Outline

Investigations on the enhancement of J_c in (Nb,X)₃Sn superconductors by internally oxidized ZrO₂ particles Addendum FCC-GOV-CC-0112 (KE3545/ATS)

@ CERN : Simon HOPKINS, Bernardo BORDINI, Amalia BALLARINO

Electromechanical studies – effects of the transverse stress H2020 EuroCirCol WP5 Task 5: Conductor studies @ CERN : Bernardo BORDINI, Davide TOMMASINI

Luc GAMPERLE Christian BARTH José FERRADAS

Outline

Investigations on the enhancement of J_c in (Nb,X)₃Sn superconductors by internally oxidized ZrO₂ particles Addendum FCC-GOV-CC-0112 (KE3545/ATS)

@ CERN : Simon HOPKINS, Bernardo BORDINI, Amalia BALLARINO

Electromechanical studies – effects of the transverse stress H2020 EuroCirCol WP5 Task 5: Conductor studies @ CERN : Bernardo BORDINI, Davide TOMMASINI

Performance target non-Cu J_c (4.2K,16 T) = 1500 A/mm²

Mt 2;10 When they saw the star, they rejoiced exceedingly with great joy

Performance target non-Cu $J_c(4.2K, 16 T) = 1500 A/mm^2$

J. Parrell et al., AIP Conf. Proc. <u>711</u> (2004) 369 T. Boutboul et al., IEEE TASC <u>19</u> (2009) 2564

An (almost) unique equipment

Laboratory for the development of superconducting wires @

- Wire drawing bench 1.5t
- Wire drawing bull-block 0.3t
- Wire drawing dies from \varnothing 15 to \varnothing 0.2 mm
- Hot-rolling mill and hot-rolling groove roller
- Rolling mill with tungsten carbide rollers
- Powered turks head machine
- Two swaging machines
- 250t hydrostatic hot extrusion machine

UNIVERSITÉ

DE GEN

R&D of internal Sn Nb₃Sn conductors

A collaboration between UNIGE and Bruker BioSpin funded by

Performance target non-Cu $J_c(4.2K, 16 T) = 1500 A/mm^2$

F. Buta, R. Flükiger, CTI 9049.1 PFIW-IW final report, 2011

Internal oxidation and grain refinement in Nb₃Sn @ Ohio State University

- Use of a Nb-Zr alloy: Zr has stronger affinity to oxygen than Nb
- Oxygen supply added to the composite: oxidation of Zr and formation of nano-ZrO₂

X. Xu et al., APL <u>104</u> (2014) 082602 X. Xu et al., Adv. Mat. <u>27</u> (2015) 1346

Average grain size is reduced down to < 50 nm Greatly enhanced pinning in binary Nb₃Sn

M.G. Benz, Trans. Metall. Soc. AIME, <u>242</u> (1968) 1067-1070

- Explore routes leading to the increase of the critical current densities in Nb₃Sn by reducing the grain sizes and increasing the upper critical field
- Evaluate different oxygen sources for the internal oxidation of Zr atoms present in the Nb filaments
- Addition of suitable dopants to enhance the upper critical field
- Optimize wire configurations and heat treatments

Ohio State Univ. Configuration

UNIGE configuration

Filament material - oxygen source combinations

Nb alloy	Metal oxide	Status
Nb-7.5wt%Ta	none	
Nb-7.5wt%Ta	MoO ₃	
Nb-7.5wt%Ta	SnO ₂	planned
Nb-1wt%Zr	MoO ₃	
Nb-1wt%Zr	SnO ₂	
Nb-1wt%Zr	CuO	being drawn
Nb-7.5wt%Ta-1wt%Zr	SnO ₂	being drawn
Nb-7.5wt%Ta-2wt%Zr	SnO ₂	being drawn

Filament material - oxygen source combinations

Nb alloy	Metal oxide	Status
Nb-7.5wt%Ta	none	
Nb-7.5wt%Ta	MoO ₃	
Nb-7.5wt%Ta	SnO ₂	planned
Nb-1wt%Zr	MoO ₃	
Nb-1wt%Zr	SnO ₂	
Nb-1wt%Zr	CuO	being drawn
Nb-7.5wt%Ta-1wt%Zr	SnO ₂	being drawn
Nb-7.5wt%Ta-2wt%Zr	SnO ₂	being drawn

Filament material - oxygen source combinations

Nb alloy	Metal oxide	Status
Nb-7.5wt%Ta	none	
Nb-7.5wt%Ta	MoO ₃	
Nb-7.5wt%Ta	SnO ₂	planned
Nb-1wt%Zr	MoO ₃	
Nb-1wt%Zr	SnO ₂	
Nb-1wt%Zr	CuO	being drawn
Nb-7.5wt%Ta-1wt%Zr	SnO ₂	being drawn
Nb-7.5wt%Ta-2wt%Zr	SnO ₂	being drawn

How to select the oxygen source ?

- high Gibbs free energy of formation
- low hardness that would make it compatible with wire fabrication
- the metal resulting from the reduction has not to affect superconductivity

Sample fabrication

0.22 mm diameter wires of Nb alloy were prepared by cold deformation of a 12 mm diameter rod with nano-sized powders compacted in a central hole

- The Nb alloy wire was then electroplated successively with: Cu, Sn, Cu
- The deposit thicknesses were varied to achieve different Cu/Sn and Nb/Sn ratios
- Oxygenation treatment was performed on the Nb alloy wire prior to the electroplating or on the full wire prior to the A15 formation

Critical current density

Oxidation treatment @ 500°C/50h

Grain morphology

Pinning force

Nb7.5Ta Reference

Nb1Zr + SnO₂

Oxidation treatment @ 500°C/300h

Pinning force

 $\begin{array}{l} GB \ pinning \Rightarrow max @ b = 0.2 \\ point \ pinning \Rightarrow max @ b = 0.33 \end{array}$

Outline

Investigations on the enhancement of J_c in (Nb,X)₃Sn superconductors by internally oxidized ZrO₂ particles Addendum FCC-GOV-CC-0112 (KE3545/ATS)

@ CERN : Simon HOPKINS, Bernardo BORDINI, Amalia BALLARINO

Electromechanical studies – effects of the transverse stress H2020 EuroCirCol WP5 Task 5: Conductor studies @ CERN : Bernardo BORDINI, Davide TOMMASINI

Luc GAMPERLE Christian BARTH José FERRADAS

Performance target non-Cu J_c(4.2K,16 T) = 1500 A/mm² and 200 MPa

J. Parrell et al., AIP Conf. Proc. <u>711</u> (2004) 369 T. Boutboul et al., IEEE TASC <u>19</u> (2009) 2564

Degradation upon transverse loads

The 16 T FCC dipoles are being designed with a peak stress of 200 MPa at operation

Are the Nb₃Sn wires in the cable able to withstand such a high stress level? Which degradation is tolerable?

Nb₃Sn Rutherford cable for HL-LHC, 40 strands

- Nb₃Sn wires are deformed during cabling
- Cables are braided with glass fiber
- The winding is impregnated with resin

Is it possible to extrapolate the behaviour of the cable from a single wire experiment?

۲

The WASP concept for I_c vs. transverse stress

CERN-UNIGE collaboration agreement K1629/TE (2009-2012)

The irreversible limit of the wire under transverse stress is influenced by several parameters

- the type of impregnation (the elastic modulus of the resin)
- the redistribution of the applied stress on the wire

Rolled wire to simulate the deformation during cabling

• the type of wire

I_c vs. transverse stress: wire in a glass fiber sleeve

The wire with glass fiber sleeve was measured in a larger groove (1.30 mm vs 1.15 mm)

I_c vs. transverse stress: epoxy *L* vs. stycast

The change of resin, from epoxy to stycast, leads to an increase of σ_{irr} by > 50 MPa The result is comparable to the value found with epoxy + glass fiber sleeve

~7.5% I_c reduction by rolling Shift of σ_{irr} by ~ 40 MPa NO I_c reduction by rolling Shift of σ_{irr} by ~ 15 MPa

...more details in the poster (#256) of José FERRADAS

- Observed a refinement of the Nb₃Sn grains but the process is still under optimization
- NbTaZr alloys: The goal is to produce material with refined grains (ZrO₂ dispersion) and enhanced B_{c2} (Ta-doping)
- Explored the irreversible stress limit of PIT and RRP wires in different load conditions

IFCCWEEK2018 ASTERDAM, The Netherlands 09 - 13 APRIL fccw2018.web.cern.ch

Thank you for the attention !

Carmine SENATORE carmine.senatore@unige.ch http://supra.unige.ch