DE LA RECHERCHE À L'INDUSTRIE

FCC week 2018

Block-coil 16T Design for the FCC

The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.

E. Rochepault, M. Segreti,

on behalf of C. Pes, M. Durante, C. Lorin With contributions of the EuroCirCol collaboration

10/04/2018

EVOLUTION OF THE DESIGN

2D MAGNETIC DESIGN – MAIN PARAMETERS

Parameter	Value	Unit
Inom	10.123	kA
Nturns	5+10+21+22	-
Bore thickness	1.9 (1.4 + 0.5)	mm
Mid-plane shim	2.28	mm
Conductor area	138	cm ²
Estimated weight*	7.90	kt
Yoke diameter	570	mm
Bcenter	16.00	Т
Bpeak	16.75	Т
Load-line margin	13.75	%
Diff. inductance	49.1	mH/m

*Area x 4668 dipoles x 14.1m x 8.7 t/m³

2D MAGNETIC DESIGN – HARMONICS

¹Other harmonics <1 unit ²Absolute value

	without P. C.	5.2	-3.2	-4.9	-1.7	
Injection (3.3 TeV)	P. C. only	0	-25.5	-2.1	-5.7	-2.5
	with P. C.	5.2	-28.9	-7.0	-7.4	
Collinion	Max. target ²	-	60	-	-	-
	negligible P. C.	-37.48	0.49	-1.96	-2.43	-1.59
Collision	Max. target ²	50	4	3	3	3

3D MAGNETIC DESIGN – 2 OPTIONS

Compact:

- Coil ends to the shortest
- Room in the spacers for internal joints

Long:

- Extension of coil ends
- Compensation of the b3 in the ends

→ Minimum conductor length

- \rightarrow Are the harmonics still within spec?
- → Is the peak field still in the straight section ?

→ What impact on the lengths? (conductor, coil ends)

 \rightarrow What impact on the peak field?

IRFU/DACM/LEAS

= Liron

 $L_{straight section}$

DE LA RECHERCHE À L'INDUSTRI

3D MAGNETIC DESIGN – HARMONICS

Design	b2	b3	b5	b7	b9
2D	-37.48	0.49	-1.96	-2.43	-1.59
3D, Compact ends	-39.03	-4.59	-2.37	-2.47	-1.58
3D, Long ends	-39.41	0.08	-2.41	-2.51	-1.58
3D compact + compensation	-38.95	-2.70	-1.90	-2.29	-1.57
2D compensation	-37.40	2.39	-1.48	-2.43	-1.59

- At collision
- Magnetic
 length 14 m

IRFU/DACM/LEAS

DE LA RECHERCHE À L'INDUSTRI

COMPENSATION OF b_3 IN 2D

Midplane shim 2.35 mm \rightarrow 2.28 mm

- b_3 in the straight section (2d): 0.49 units \rightarrow 2.39 units
- b_3 integrated -4.59 units \rightarrow -2.70 units
- Slightly lower other harmonics
- Slightly higher margin

v5ari204

3D MAGNETIC DESIGN – PEAK FIELD

- 1. Peak field in the center (z = 0) = 16.6 T for both cases
- 2. at the beginning of the coil ends ~16 T
- 3. Peak field in the pole tip ~15 T

3D MAGNETIC DESIGN – SUMMARY

Parameter	Compact	Compact compensated	Long	Unit 3.
b3 integrated	-4.59	-2.70	0.08	units
B _{peak1} , z=0	16.6	16.6	16.6	Т
B _{peak2} , bend	15.9	15.9	16.0	T
B _{peak3} , tip	15.0	15.0	15.2	Т
L _{straight} section	500	500	500	mm (half length)
L _{iron}	500	500	500	mm (half length)
L _{coil}	722	722	813	mm (half length)
L _{mag}	642	642	678	mm (half length)
$L_{coil end} = L_{coil} - L_{mag}$	80	80	135	mm (per end)
	L _{ss} L _{coil}	Nc • • coil end	ominal: Short er Low har Margin (nds monics (ΔB _{peak} > 0.6 T)

IRFU/DACM/LEAS

FCC week 2018 - 10/04/2018

DE LA RECHERCHE À L'INDUSTR

2D MECHANICAL DESIGN – MODEL

- Geometry:
 - Interbeam distance = 204 mm
 - Outer yoke Ø = 570 mm
 - 67 mm Al shell + 20 mm SS shell
- ECC Coil properties (293K/4.2K):
 - Ex = 25 GPa / 27.5 GPa
 - Ey = 30 GPa / 33 GPa
- Pre-load:
 - 1. Bladders without SS shell
 - 2. 2 Horizontal + 2 Vertical keys
 - 3. Imposed displacement on SS shell bottom = -0.2 mm (260 MPa tension)
- Contacts:
 - Bonded: inside the coils, with the poles
 - Separation allowed with 0.2 friction: between the coils, with the structure

IRFU/DACM/LEAS

Shell Shell

2D MECHANICAL DESIGN – COIL-POLE CONTACT

IRFU/DACM/LEAS

2D MECHANICAL DESIGN – COIL PEAK STRESS

IRFU/DACM/LEAS

DE LA RECHERCHE À L'INDUSTRI

FCC week 2018 - 10/04/2018

2D MECHANICAL DESIGN – STRUCTURE

2D MECHANICAL DESIGN – STRUCTURE

DE LA RECHERCHE À L'INDUSTRI

2D MECHANICAL DESIGN – STRUCTURE

IRFU/DACM/LEAS

FCC week 2018 - 10/04/2018

2D MECHANICAL DESIGN – STRUCTURE

ECHERCHE À L'INDUSTRI

2D MECHANICAL DESIGN – STRUCTURE

IRFU/DACM/LEAS

ECHERCHE À L'INDUSTRI

FCC week 2018 - 10/04/2018

- 2d magnetic design:
 - 16 T at 14 % of LL margin at 1.9 K
 - At collision: **b3 and higher orders < 3 units** (absolute value)

b2 ~ -40 units

• At injection: **b3** ~ -30 units

→ block-coil more favorable than other designs

b5 and higher orders < 10 units

- 3d magnetic design:
 - Compact ends
 - Similar values for integrated harmonics
 - Additional margin in coil ends ($\Delta B_{peak} > 0.6 T$)
- 2d mechanical design:
 - Coil stress < criteria
 - Iron X-Pad + Yoke: locally > criterion at warm
 - Other components: stress < criteria

Short-term future (2018-2019)

- Coil end design to be validated by a 3D mechanical study
 - Compact ends favorable for:
 - Limited number of parts
 - Easier pre-load because of aligned blocks
 - EM Forces more balanced between the blocks
- Protection:
 - To be updated by protection team
 - → should stay below the limits (minor modifications wrt previous designs)

Mid-term future (~2022)

- F2D2: a block-coil short model dipole toward FCC
- \rightarrow See presentation « The CEA 16T model for the FCC », E. Rochepault

DE LA RECHERCHE À L'INDUSTRIE

BACKUP SLIDES

CONDUCTOR PARAMETERS

PARAMETER	Va	Values		
Strand diameter	1.1	0.7	mm	
Number of strands	21	34	adim	
Unreacted width	12.47	12.47	mm	
Unreacted thickness	1.94	1.23	mm	
Reacted width	12.6	12.6	mm	
Reacted thickness	2.00	1.27	mm	
Copper/non-Copper ratio	0.8	2.0	adim	
Insulation thickness	0.15	0.15	mm	
Bare cable compaction	11.8	12.0	%	
Packing factor	85.4	88.2	%	
Transposition pitch	93	93	mm	

C. Lorin, Oct 17 review

J. Fleiter: Rutherford cable design approach and experience at CERN (here)

Parameter	Unit	11 T RRP for LS2	11 T PIT for LS2	MQXF (PIT and RRP)	FRESCA2	ERMC	SMC
Number of strands	(-)	40	40	40	40	40	18
Strands diameter	mm	0.70	0.70	0.85	1.0	1.0	1.0
Cable bare width	mm	14.70	14.70	18.15	20.9	20.9	10
Cable bare thickness	mm	1.250	1.250	1.525	1.82	1.82	1.81
Keystone angle	0	0.79	0.50	0.40	0.0	0.0	0.0
Thin edge compaction*	%	17.95	15.3	14.02	0.0	0.0	0.5
Thick edge compaction*	%	3.48	6.13	6.57	9.0	9.0	9.5
Transposition pitch	mm	100	100	109	120	120	63
SS Core width (thickness)	mm		12 (0.0025)	NO	14 (0.0025)	NO

Cea Eurocirco 3D magnetic design

- Assumptions:
 - Return ends 1000 mm straight section
 - Hardway bend : Rmin = 450 mm in upper layer (w = 12.6 mm)
 - Strain 13.8 mm/m (HD2: 30.6 mm/m HD3: 12.4 mm/m Fresca2: 15.3 mm/m)
 - Coil-to-aperture y-dire
 - Double pancake end₅

DE LA RECHERCHE À L'INDUSTRIE

Cea	3D HARMONIC
-----	--------------------

S

$$Ib_{n} = \frac{\int B_{n}(z)dz}{\int B_{1}(z)dz} = \frac{\int B_{n}(z)dz}{L_{mag} \cdot B_{ref}} = \frac{\int b_{n}(z)dz}{L_{mag}}$$
$$Ib_{n,short} = \frac{\int_{short} b_{n}(z)dz}{L_{mag,short}}$$

$$Ib_{n} = \frac{\int_{short} b_{n}(z)dz + b_{n}(0). (L_{mag} - L_{mag,short})}{L_{mag}}$$
$$Ib_{n} = \frac{Ib_{n,short}. L_{mag,short} + b_{n}(0). (L_{mag} - L_{mag,short})}{L_{mag}}$$

<u>Ex</u>: -10 units on a short length $Ib_3 = [-10 \text{ units } x \ 0.68x2 \ -0.8 \text{ units } x \ (14.069-0.68x2)] / 14.069$ = -1.69 units

2D MECHANICAL DESIGNS

Interbeam distance = 204 mm \emptyset_{ext} iron yoke = 570 mm Total \emptyset_{ext} = 740 mm 65 + 20 mm thick shells \rightarrow 2 x 0.67 mm \leftarrow

	a, max	σ Von Mises
		max
Keys + SS shell	-170	149
Cool-down	-205	188
Energization 16 T	-188	178

Interbeam distance = 204 mm \emptyset_{ext} iron yoke = 570 mm Total \emptyset_{ext} = 740 mm 65 + 20 mm thick shells 1.51mm \leftarrow

	σ_X max	σ Von Mises max
Keys + SS shell	-135	123
Cool-down	-184	170
Energization 16 T	-214	186

Interbeam distance = 204 mm \emptyset_{ext} iron yoke = 570 mm Total \emptyset_{ext} = 744 mm 67 + 20 mm thick shells \rightarrow 2 x 0.72 mm \leftarrow

	σ_X max	σ Von Mises max
Keys + SS shell	-148	137
Cool-down	-181	160
Energization 16 T	-199	177

Material

AI 7075

SS 316 LN

NITRONIC 40

Ferromagnetic

iron

Ti 6AI 4V

Material properties (Davide 3rd FCC week)

Coil maximum stress

- @ 4.2 K: 200 MPa
- @ 300 K: 150 MPa

R_{p 0.2} [MPa]

293 K 4.3 K

690

1050

1240

720*

1650

480

350

350

230

800

Material	E [C	GPa]	pr	(L _{4.3K} -L _{293K})/L _{293K}
	293 K	4.3 K	293K/4.3K	293 K -> 4.3K
Coil	EX = 25 EY = 30 GXY = 21	EX = 27.5 EY = 33 GXY = 21	0.3	X = 3.36e-3 Y = 3.08e-3
StSt	193	210	0.28	2.84e-3
Iron	213	224	0.28	1.97e-3
Aluminum	70	79	0.34	4.2e-3
Titanium	115	126.5	0.3	1.74e-3
Nitronic 40	210	225	0.28	2.6e-3

*Ferromagnetic iron @ 4.2 K stress < 380 MPa in tension (1st principal stress)

2D MECHANICAL DESIGN – STRUCTURE

	Component	Material	Pre-load	1.9 K	16 T	Crit. 293K	Crit 1.9 K
	Poles	Ti6Al4V	622	870	1125	800	1650
MPa]	Y-Pusher	Stainless steel	84	369	489	350	1050
s [Z	Y-Pad	Iron	196	468	423	230	720
lise	X-Pad	Iron	, 303	461	482	230	720
N	Yokes	Iron	486	631	716	230	720
\$	Al shell	AI	155	275	289	480	690
	SS shell	Stainless steel	260	230	250	350	1050
Wit At s loca Out	hin spec spec or alized side spec	ANSYS Release 13 Build 19.0 PHOT NO. 1 PHOT NO. 1 SUED=1 TIME=1 SECV. (AVG) PowerGraphics EFACTI-1 AVRES-Mat. SUF TIME=1 SECV. (AVG) PowerGraphics EFACTI-1 AVRES-Mat. SEW = 303E+09 O SET-256E+08 SET-258E+09 102E+09 122E+09 232E+09 248+09 234F+09 232E+09 232E+09	: Keys			Alsys Release 1: Build 19.0 PLOT NO. 1 NORAL SOLUTION STEP=1 TIME-1 SECV (AVG) POWERCRAPHICS PERCET-1 AVRES-Mat AVRES-Mat 2562V-03 SN = 437203 SN =	

IRFU/DACM/LEAS

FCC week 2018 - 10/04/2018

Page 26