16 T DIPOLE QUENCH PROTECTION

Tiina Salmi1 and Marco Prioli2

Tampere University of Technology1, CERN2

\textit{Acknowledgement:} E. Ravaioli2, A. Stenvall1, A. Verweij2, and EuroCirCol WP5 magnet designers and the team

\textit{FCC-week, Amsterdam, 11th April 2018}
Considered EuroCirCol 16 T dipole designs

<table>
<thead>
<tr>
<th>Magnet, version</th>
<th>Cosθ, 22b_38_v1</th>
<th>Block, V2ari194</th>
<th>Common coil, vh12_2ac6 (#11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inom (A)</td>
<td>11390</td>
<td>10000</td>
<td>16400</td>
</tr>
<tr>
<td>Ld,nom (mH/m)</td>
<td>2 x 19.8</td>
<td>2 x 24.8</td>
<td>21.1</td>
</tr>
<tr>
<td>Cable</td>
<td>HF-cable</td>
<td>LF-cable</td>
<td>HF-cable</td>
</tr>
<tr>
<td>Cable w x t (bare) (mm)</td>
<td>13.2 x 1.95</td>
<td>14.0 x 1.265</td>
<td>12.6 x 2.0</td>
</tr>
<tr>
<td>Number of strands</td>
<td>22</td>
<td>38</td>
<td>21</td>
</tr>
<tr>
<td>Strand diam. (mm)</td>
<td>1.1</td>
<td>0.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Cu/SC</td>
<td>0.82</td>
<td>2.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Cable ins. : 0.15 mm, RRR = 100, filament twist = 14 mm, strand twist= 15°

Jc with Bordini fit: $T_{c0} = 16$ K, $B_{c20} = 29.38$ T, $\alpha = 0.96$, $C_0 = 267845 \text{ A/mm}^2\text{T}$

T. Salmi and M. Prioli, FCC week 2018
Outline

Introduction: Why is quench protection so critical?

1. The steps in the quench protection design

2. Protection with CLIQ (baseline)
 • Cosθ, Block, Common-coil

3. Protection with quench heaters (back-up option)
 • Cosθ, Block, Common-coil

4. Summary

Appendix: Description of the computational tools and assumptions

See also the talks by M. Prioli “Mechanical analysis during quench” and “Circuit layout and protection”
Introduction: Why is quench protection so critical?

1. The steps in the quench protection design

2. Protection with CLIQ (baseline)
 • $\cos \theta$, Block, Common-coil

3. Protection with quench heaters (back-up option)
 • $\cos \theta$, Block, Common-coil

4. Summary

Appendix: Description of the computational tools and assumptions
Introduction: Why quench protection is so critical?

- High magnetic field + compact size \rightarrow High stored energy density
 - 16 T CosT, Block, C-c: \sim40 MJ, \sim130 MJ/m3

- Quench \rightarrow Energy needs to be absorbed
 - Joule heating in the quenched cables

![Graph showing stored energy density in dipoles vs. peak field. Plot by courtesy of L. Bottura and D. Schoerling.]

T. Salmi and M. Prioli, FCC week 2018
Introduction: Why quench protection is so critical?

- High magnetic field + compact size \(\rightarrow \) High stored energy density
 - 16 T CosT, Block, C-c: \(~40\ \text{MJ}, \sim130\ \text{MJ/m}^3\)

- Quench \(\rightarrow \) Energy needs to be absorbed
 - Joule heating in the quenched cables

- Magnet resistance drives the energy discharge

- Need to quench the entire magnet fast
 - Detection (~20 ms)
 - Heaters/CLIQ (~10-30 ms)

\[
\text{Magnet powering circuit in accelerator}
\]
Outline

Introduction: Why is quench protection so critical?

1. The steps in the quench protection design

2. Protection with CLIQ (baseline)
 • Cosθ, Block, Common-coil

3. Protection with quench heaters (back-up option)
 • Cosθ, Block, Common-coil

4. Summary

Appendix: Description of the computational tools and assumptions
1. The steps in the quench protection design

STEP 1: Design criteria
Max temperature 350 K and voltage 1200 V
1. The steps in the quench protection design

STEP 1: Design criteria
Max temperature 350 K and voltage 1200 V

STEP 2: Simplified analysis
- Protection efficiency: 20 ms det. + 20 ms heaters
- Tools for quick feedback
1. The steps in the quench protection design

STEP 1: Design criteria
Max temperature 350 K and voltage 1200 V

STEP 2: Simplified analysis
- Protection efficiency: 20 ms det. + 20 ms heater
- Tools for quick feedback

![Schematic of magnet current decay after 20+20 ms protection delays](image)
1. The steps in the quench protection design

STEP 1: Design criteria
Max temperature 350 K and voltage 1200 V

STEP 2: Simplified analysis
- Protection efficiency: 20 ms det. + 20 ms heaters
- Tools for quick feedback

STEP 3: Detailed protection schemes
- CLIQ, quench heaters, circuit
 - Detection time 20 ms
 - Developed tools

Magnets can be protected: CLIQ chosen as baseline, heaters a back-up solution
Outline

Introduction: Why is quench protection so critical?

1. The steps in the quench protection design

2. Protection with CLIQ (baseline)
 - $\cos \theta$, Block, Common-coil

3. Protection with quench heaters (back-up option)
 - $\cos \theta$, Block, Common-coil

4. Summary

Appendix: Description of the computational tools and assumptions
2. Protection with CLIQ: The principle

CLIQ – Coupling Loss Induced Quench
• Discharge capacitor bank across part of the winding
 ➞ Oscillations of transport current
 ➞ Coupling losses ➞ Quench

Advantages:
• Heat deposition directly to the strand
• Connection can be made external to the magnet ➞ Accessible for repair etc.

Cautions:
• New technology, HL-LHC will provide first experience in real accelerator

CLIQ leads in the 15 m long LHC main dipole (Aug 2015), Photo by courtesy of E. Ravaioli

T. Salmi and M. Prioli, FCC week 2018
2. Protection with CLIQ: Design considerations

- Important CLIQ design parameters:
 - Location of the CLIQ leads
 - Location of losses, voltage accumulation
 - Number of CLIQ units
 - Charging voltage and capacitance of the units

![Division of the magnet to electrical parts (8)](image)

![CLIQ connection scheme](image)

![Resulting current oscillations](image)

T. Salmi and M. Prioli, FCC week 2018
2. Protection with CLIQ: Cosθ

Location of the peak heat deposition in CLIQ-protected 2-aperture magnet

CLIQ configuration

\[V_0 = 1.25 \text{ kV}, \ C = 50 \text{ mF} \]

Voltage distribution 120 ms after CLIQ activation

Max. voltage to ground 800 V

Final temperature distribution after CLIQ activation

Hot-spot temperature 286 K

Simulation with -COMSOL (at \(I_{\text{nom}} \)) – M. Prioli

T. Salmi and M. Prioli, FCC week 2018
2. Protection with CLIQ: Cosθ
- Sensitivity analysis and redundancy

Simulated temperature and voltage for varying cable parameters

<table>
<thead>
<tr>
<th>Fil. Twist (mm)</th>
<th>RRR HF/LF</th>
<th>$f_{p,\text{eff}}$</th>
<th>T_{max} (K)</th>
<th>V_{max} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>100/100</td>
<td>1</td>
<td>304</td>
<td>950</td>
</tr>
<tr>
<td>10</td>
<td>100/100</td>
<td>1</td>
<td>305</td>
<td>940</td>
</tr>
<tr>
<td>20</td>
<td>100/100</td>
<td>1</td>
<td>311</td>
<td>940</td>
</tr>
<tr>
<td>14</td>
<td>150/150</td>
<td>1</td>
<td>312</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>150/150</td>
<td>1</td>
<td>312</td>
<td>1000</td>
</tr>
<tr>
<td>20</td>
<td>150/150</td>
<td>1</td>
<td>313</td>
<td>1010</td>
</tr>
<tr>
<td>14</td>
<td>200/200</td>
<td>1</td>
<td>315</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>200/200</td>
<td>1</td>
<td>320</td>
<td>1000</td>
</tr>
<tr>
<td>20</td>
<td>200/200</td>
<td>1</td>
<td>320</td>
<td>1010</td>
</tr>
<tr>
<td>14</td>
<td>50/50</td>
<td>1</td>
<td>292</td>
<td>950</td>
</tr>
<tr>
<td>10</td>
<td>50/50</td>
<td>1</td>
<td>304</td>
<td>950</td>
</tr>
<tr>
<td>20</td>
<td>50/50</td>
<td>1</td>
<td>291</td>
<td>1000</td>
</tr>
<tr>
<td>14</td>
<td>50/200</td>
<td>1</td>
<td>306</td>
<td>1150</td>
</tr>
<tr>
<td>14</td>
<td>200/50</td>
<td>1</td>
<td>298</td>
<td>1170</td>
</tr>
</tbody>
</table>

$F_{p,\text{eff}}$ = Scaling factor for matrix transverse resistivity for interfil. coupling loss.

Impact of filament twist, RRR and $f_{p,\text{eff}}$ is < 20 K, 250 V.

This analysis is done at 105% of I_{nom} (1-AP.).

Simulation with LEDET

T. Salmi and M. Prioli, FCC week 2018
2. Protection with CLIQ: Cosθ

- Sensitivity analysis and redundancy

Simulated temperature and voltage for varying cable parameters

<table>
<thead>
<tr>
<th>Fil. Twist (mm)</th>
<th>RRR HF/LF</th>
<th>(f_{p,\text{eff}})</th>
<th>Tmax (K)</th>
<th>Vmax (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>100/100</td>
<td>1</td>
<td>304</td>
<td>950</td>
</tr>
<tr>
<td>10</td>
<td>100/100</td>
<td>1</td>
<td>305</td>
<td>940</td>
</tr>
<tr>
<td>20</td>
<td>100/100</td>
<td>1</td>
<td>311</td>
<td>940</td>
</tr>
<tr>
<td>14</td>
<td>150/150</td>
<td>1</td>
<td>312</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>150/150</td>
<td>1</td>
<td>312</td>
<td>1000</td>
</tr>
<tr>
<td>20</td>
<td>150/150</td>
<td>1</td>
<td>313</td>
<td>1010</td>
</tr>
<tr>
<td>14</td>
<td>200/200</td>
<td>1</td>
<td>315</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>200/200</td>
<td>1</td>
<td>320</td>
<td>1000</td>
</tr>
<tr>
<td>20</td>
<td>200/200</td>
<td>1</td>
<td>320</td>
<td>1010</td>
</tr>
<tr>
<td>14</td>
<td>50/50</td>
<td>1</td>
<td>292</td>
<td>950</td>
</tr>
<tr>
<td>10</td>
<td>50/50</td>
<td>1</td>
<td>304</td>
<td>950</td>
</tr>
<tr>
<td>20</td>
<td>50/50</td>
<td>1</td>
<td>291</td>
<td>1000</td>
</tr>
<tr>
<td>14</td>
<td>50/200</td>
<td>1</td>
<td>306</td>
<td>1150</td>
</tr>
<tr>
<td>14</td>
<td>200/50</td>
<td>1</td>
<td>298</td>
<td>1170</td>
</tr>
</tbody>
</table>

\(f_{p,\text{eff}}\) = Scaling factor for matrix transverse resistivity for interfil. coupling loss.

This analysis is done at 105% of Inom (1-ap.).

Impact of filament twist, RRR and \(f_{p,\text{eff}}\) is < 20 K, 250 V.

Based on a CLIQ reliability study by A. Fernandez:

Redundancy can be obtained within the CLIQ unit:

- Components related to triggering fully redundant
- Configuration of several capacitors: Short circuit in one leads only to reduction of energy.

Simulation with LEDET

Simulation with CLIQ

T. Salmi and M. Prioli, FCC week 2018

17
2. Protection with CLIQ: Block

- **Location of the peak heat deposition in CLIQ-protected 2-aperture magnet**

- **CLIQ configuration**

 - CLIQ1: $V_0=0.6$ kV, $C=50$ mF
 - CLIQ2: $V_0=1.2$ kV, $C=50$ mF

- **Voltage distribution 70 ms after CLIQ activation**

 - Max. voltage to ground 0.7 kV

- **Final temperature distribution after CLIQ activation**

 - Hot-spot temperature 286 K

-Simulation with COMSOL (at I_{nom}) – M. Prioli

T. Salmi and M. Prioli, FCC week 2018
2. Protection with CLIQ: Common-coil

Location of the peak heat deposition in CLIQ-protected 2-aperture magnet

CLIQ configuration

CLIQ1: $V_0=0.9$ kV, $C=80$ mF, CLIQ2: $V_0=0.9$ kV, $C=80$ mF

Current oscillations

Strong di/dt requires experimental validation

Temperature and voltage distribution

Hot-spot temperature 280 K

Max. voltage to ground 1.35 kV

Simulation with STEAM-LEDET, 2 apertures (at I_{nom})

T. Salmi and M. Prioli, FCC week 2018
Outline

Introduction: Why is quench protection so critical?

1. The steps in the quench protection design

2. Protection with CLIQ (baseline)
 • $\cos \theta$, Block, Common-coil

3. Protection with quench heaters (back-up option)
 • $\cos \theta$, Block, Common-coil

4. Summary

Appendix: Description of the computational tools and assumptions
3. Protection with heaters: Heater technology

- Similar technology than in LHC\(^1\) and HL-LHC\(^{2,3}\):
 - Cu-plated stainless steel strips:
 - SS thickn. 25 µm, Cu thickn. 10 µm
 - Insulation to coil: 75 µm polyimide

- Powering with capacitor bank discharge:
 - Heater Firing Unit (HFU): **1200 V and 10 mF** (LHC: 900 V and 7 mF)
 - 1 Ω for wires etc. / circuit

\(^3\) P. Ferracin et al, “Development of MQXF, the Nb3Sn Low-β Quadrupole for the HiLumi LHC”, *IEEE TAS*, 26(4), 2016.
3. Protection with heaters: $\cos \theta$

- Heaters cover 62% of turns
- 14 HFU’s / 2-ap. magnet
- **At 100% I_{nom}**: Heater delays: 8-21 ms

Hotspot temperature 322 K
- **Peak voltage to ground 980 V**
- Between turns 80 V
- Between layers 980 V

Locations of heater strips
(No inner layer heaters!)

Heater strip geometries and powering

<table>
<thead>
<tr>
<th>HFU</th>
<th>QH Strips</th>
<th>Strip width (cm)</th>
<th>HS/ period (cm)</th>
<th>$P_{QH,0}$ (W/cm²)</th>
<th>τ_{RC} (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>2A$_c$</td>
<td></td>
<td>2B$_c$</td>
<td></td>
<td>2A$_e$</td>
</tr>
<tr>
<td>#2</td>
<td>3C$_e$</td>
<td></td>
<td>3A$_c$</td>
<td></td>
<td>3B$_c$</td>
</tr>
<tr>
<td>#3</td>
<td>4A$_c$</td>
<td></td>
<td>4B$_c$</td>
<td>1.3</td>
<td>6/30</td>
</tr>
<tr>
<td>#4</td>
<td>4C$_c$</td>
<td></td>
<td>4D$_c$</td>
<td>1.3</td>
<td>6/30</td>
</tr>
<tr>
<td>#5</td>
<td>2C$_d$</td>
<td></td>
<td>3A$_d$</td>
<td></td>
<td>3B$_d$</td>
</tr>
<tr>
<td>#6</td>
<td>4A$_d$</td>
<td></td>
<td>4B$_d$</td>
<td>1.3</td>
<td>6/30</td>
</tr>
<tr>
<td>#7</td>
<td>4C$_d$</td>
<td></td>
<td>4D$_d$</td>
<td>1.3</td>
<td>6/30</td>
</tr>
</tbody>
</table>

Simulation with CoHDA+Coodi

T. Salmi and M. Prioli, FCC week 2018
3. Protection with heaters: \(\cos \theta \)

-Failure analysis

- 1 strip fails on both sides of the coil, for both apertures
- \(\rightarrow \) Temperature and voltage increases only 5 K & 100 V

\[\text{Simulation of temperature and voltage after strip failure*,**} \]

<table>
<thead>
<tr>
<th>Failed strip</th>
<th>(\text{Tmax (K)})</th>
<th>Vmax, gnd (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QH2A</td>
<td>325</td>
<td>930</td>
</tr>
<tr>
<td>QH2B</td>
<td>324</td>
<td>930</td>
</tr>
<tr>
<td>QH2C</td>
<td>324</td>
<td>930</td>
</tr>
<tr>
<td>QH3A</td>
<td>327</td>
<td>900</td>
</tr>
<tr>
<td>QH3B</td>
<td>325</td>
<td>910</td>
</tr>
<tr>
<td>QH3C</td>
<td>324</td>
<td>930</td>
</tr>
<tr>
<td>QH4A</td>
<td>330</td>
<td>870</td>
</tr>
<tr>
<td>QH4B</td>
<td>326</td>
<td>1130</td>
</tr>
<tr>
<td>QH4C</td>
<td>325</td>
<td>1100</td>
</tr>
<tr>
<td>Qh4D</td>
<td>324</td>
<td>1070</td>
</tr>
</tbody>
</table>

*Turns under failed strip quench 40 ms after heater activation (layers 2-3) and 50 ms later (layer 4)

**Failures on layer 2 do not affect the quenching time of layer 1

No failures: 322 K, 960 V

T. Salmi and M. Prioli, FCC week 2018
3. Protection with heaters: Block

- Heaters cover 77% of turns

- 13 HFU’s / 2-ap. magnet

- **At 100% Inom**: Heater delays: 7-41 ms

Hotspot temperature 321 K
- Peak voltage to ground 870 V
- Between turns 90 V
- Between layers 1160 V

Locations of heater strips

Heater strip geometries and powering

<table>
<thead>
<tr>
<th>HFU</th>
<th>QH Strips</th>
<th>Strip width (cm)</th>
<th>HS/ period (cm)</th>
<th>(P_{QH}(0)) (W/cm²)</th>
<th>(T_{RC}) (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>1A₁c₁</td>
<td></td>
<td>2A₁c₁</td>
<td>1.9</td>
<td>5/22</td>
</tr>
<tr>
<td>#2</td>
<td>1B₁c₁</td>
<td></td>
<td>2A₁c₁</td>
<td>1.8</td>
<td>6/30</td>
</tr>
<tr>
<td>#3</td>
<td>(3A₁c₁ + 4A₁c₁ + 3A₂c₂ + 4A₂c₂)</td>
<td></td>
<td>(3A₁c₁ + 4A₁c₁ + 3A₂c₂ + 4A₂c₂)⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>3B₁c₁</td>
<td></td>
<td>4B₁c₁</td>
<td>2.4</td>
<td>6/30</td>
</tr>
<tr>
<td>#5</td>
<td>1A₁c₁</td>
<td></td>
<td>2A₁c₁</td>
<td>1.9</td>
<td>5/22</td>
</tr>
<tr>
<td>#6</td>
<td>1B₁c₁</td>
<td></td>
<td>2A₁c₁</td>
<td>1.8</td>
<td>6/30</td>
</tr>
<tr>
<td>#7</td>
<td>3B₁c₁</td>
<td></td>
<td>4B₁c₁</td>
<td>2.4</td>
<td>6/30</td>
</tr>
</tbody>
</table>
3. Protection with heaters: Common-coil

- Heaters cover 70% of turns
- 15 HFU’s / 2-ap. magnet
- **At 100% Inom**: Heater delays: 6-20 ms

Hotspot temperature 330 K
- **Peak voltage to ground 1040 V**
- Between turns 80 V
- Between layers 1060 V

Heater strip geometries and powering

<table>
<thead>
<tr>
<th>HFU</th>
<th>QH Strips</th>
<th>Strip width (cm)</th>
<th>HS/ period (cm)</th>
<th>$P_{0W}(0)$ (W/cm²)</th>
<th>τ_{RC} (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0A₂₁</td>
<td></td>
<td>0B₂₁</td>
<td></td>
<td>0A₂₂</td>
</tr>
<tr>
<td>#2</td>
<td>1A₂₁</td>
<td></td>
<td>1B₂₁</td>
<td></td>
<td>1C₂₁</td>
</tr>
<tr>
<td>#3</td>
<td>2A₂₁</td>
<td></td>
<td>2B₂₁</td>
<td>1.75</td>
<td>6/31</td>
</tr>
<tr>
<td>#4</td>
<td>2A₂₁</td>
<td></td>
<td>2B₂₁</td>
<td>1.75</td>
<td>6/31</td>
</tr>
<tr>
<td>#5</td>
<td>3A₂₁</td>
<td></td>
<td>3B₂₁</td>
<td>1.75</td>
<td>6/31</td>
</tr>
<tr>
<td>#6</td>
<td>3C₂₁</td>
<td></td>
<td>3D₂₁</td>
<td>1.75</td>
<td>6/31</td>
</tr>
<tr>
<td>#7</td>
<td>4A₂₁</td>
<td></td>
<td>4B₂₁</td>
<td>1.75</td>
<td>6/31</td>
</tr>
<tr>
<td>#8</td>
<td>4C₂₁</td>
<td></td>
<td>4D₂₁</td>
<td>1.75</td>
<td>6/31</td>
</tr>
</tbody>
</table>

Locations of heater strips

Simulation with CoHDA+Coodi
Outline

Introduction: Why is quench protection so critical?

1. The steps in the quench protection design

2. Protection with CLIQ (baseline)
 • $\cos\theta$, Block, Common-coil

3. Protection with quench heaters (back-up option)
 • $\cos\theta$, Block, Common-coil

4. Summary

Appendix: Description of the computational tools and assumptions
Comparison of the methods

<table>
<thead>
<tr>
<th></th>
<th>Cos(\theta)</th>
<th>Block</th>
<th>Common-coil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLIQ</td>
<td>Heaters</td>
<td>CLIQ</td>
</tr>
<tr>
<td>Tmax (K)</td>
<td>286</td>
<td>322</td>
<td>286</td>
</tr>
<tr>
<td>Vmax (V)</td>
<td>800</td>
<td>980</td>
<td>700</td>
</tr>
<tr>
<td>Units/2-ap.</td>
<td>2</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Estored in QPS (kJ)</td>
<td>78</td>
<td>101</td>
<td>90</td>
</tr>
</tbody>
</table>
Comparison of the methods

<table>
<thead>
<tr>
<th></th>
<th>Cosθ</th>
<th>Block</th>
<th>Common-coil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLIQ</td>
<td>Heaters</td>
<td>CLIQ</td>
</tr>
<tr>
<td>Tmax (K)</td>
<td>286</td>
<td>322</td>
<td>286</td>
</tr>
<tr>
<td>Vmax (V)</td>
<td>800</td>
<td>980</td>
<td>700</td>
</tr>
<tr>
<td>Units/2-ap.</td>
<td>2</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Stored in QPS (kJ)</td>
<td>78</td>
<td>101</td>
<td>90</td>
</tr>
</tbody>
</table>
Comparison of the methods

<table>
<thead>
<tr>
<th></th>
<th>CLIQ</th>
<th>Heaters</th>
<th>CLIQ</th>
<th>Heaters</th>
<th>CLIQ</th>
<th>Heaters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tmax (K)</td>
<td>286</td>
<td>322</td>
<td>286</td>
<td>321</td>
<td>280</td>
<td>330</td>
</tr>
<tr>
<td>Vmax (V)</td>
<td>800</td>
<td>980</td>
<td>700</td>
<td>870</td>
<td>1350</td>
<td>1040</td>
</tr>
<tr>
<td>Units/2-ap.</td>
<td>2</td>
<td>14</td>
<td>4</td>
<td>13</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Estored in QPS (kJ)</td>
<td>78</td>
<td>101</td>
<td>90</td>
<td>94</td>
<td>65</td>
<td>108</td>
</tr>
</tbody>
</table>

CLIQ

- **Pros**: Homog., efficient, loss
- **Cons**: Low current prot.

Heaters

- **Pros**: Focused heating
- **Cons**: Diffusion delay

Efficiency

- **Pros**: Accessible connection
- **Cons**: Leads btw pancake layers, part of magnet circuit

Technology

- **Pros**: External circuit
- **Cons**: Delicate technology

Cost / complexity

- **Pros**: Few units needed
- **Cons**: Complex units

- **Pros**: Simple units
- **Cons**: Many units+heaters needed
Comparison of the methods

<table>
<thead>
<tr>
<th></th>
<th>CLIQ</th>
<th>Heaters</th>
<th>CLIQ</th>
<th>Heaters</th>
<th>CLIQ</th>
<th>Heaters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tmax (K)</td>
<td>286</td>
<td>322</td>
<td>286</td>
<td>321</td>
<td>280</td>
<td>330</td>
</tr>
<tr>
<td>Vmax (V)</td>
<td>800</td>
<td>980</td>
<td>700</td>
<td>870</td>
<td>1350</td>
<td>1040</td>
</tr>
<tr>
<td>Units/2-ap.</td>
<td>2</td>
<td>14</td>
<td>4</td>
<td>13</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Estored in QPS (kJ)</td>
<td>78</td>
<td>101</td>
<td>90</td>
<td>94</td>
<td>65</td>
<td>108</td>
</tr>
</tbody>
</table>

CLIQ

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homog., efficient, low current prot.</td>
<td></td>
</tr>
<tr>
<td>Accessible connection</td>
<td>Leads btw pancake layers, part of magnet circuit</td>
</tr>
<tr>
<td>Few units needed</td>
<td>Complex units</td>
</tr>
</tbody>
</table>

Heaters

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focused heating</td>
<td>Diffusion delay</td>
</tr>
<tr>
<td>External circuit</td>
<td>Delicate technology</td>
</tr>
<tr>
<td>Simple units</td>
<td>Many units+heaters needed</td>
</tr>
</tbody>
</table>

T. Salmi and M. Prioli, FCC week 2018
Summary

- Magnets were designed to comply with the “40 ms/350 K “ protectability design criteria
 - Continuous feedback loop between quench protection studies and magnet designs

- **Protection with CLIQ feasible for all magnet options**
 - Max temperatures below 300 K
 - Internal voltages below 1000 V (except C-c, but work in progress)

- Protection with heaters is considered a back-up option

→ **Used methodology for protection design seems successful and the developed tools useful**

- For CDR: Almost all the studies are ready, writing of a final report is underway
Outline

Introduction: Why is quench protection so critical?

1. The steps in the quench protection design

2. Protection with CLIQ (baseline)
 • \(\cos \theta \), Block, Common-coil

3. Protection with quench heaters (back-up option)
 • \(\cos \theta \), Block, Common-coil

4. Summary

Appendix: Description of the computational tools and assumptions
Simulation tools and assumptions 1/2

Common assumptions in all simulations:

• Adiab. Hotspot temperature
• Current decay simulated in 2-D, discretized at turn level
• Material properties based on NIST libraries
• Material properties based on cable average magnetic field
• Tcs for quench computed based on the cable peak field
• Hotspot computed for the worst case cable
• 20 ms detection delay

• ”40 ms delay”:
 • Coodi: Adiabatic model for current decay, temperature, and voltage computation (no heat diffusion between turns)
 • Quench time and propagation for each turn is an input
 • No AC (interfilament coupling loss)
 • Current follows the strand path after quench

Simulation tools and assumptions 2/2

CLIQ studies:
- **LEDET:** Lumped element model for interfilament coupling loss after CLIQ activation
 - Current decay, temperature and voltage evolution
 - Co-simulation used to couple with PSPICE for asymmetric multi-CLIQ simulations
- **COMSOL:** FEM for electrothermal behaviour after CLIQ discharge
 - Heat diffusion between turns accounted
- E. Ravaioli, PhD Thesis

Heater based protection:
- **CoHDA:** 2-D heat diffusion model for heater delays
 - Accounts for the heater station length
 - Quench when cable maximum temperature reaches Tcs
 - **Coodi:** Current decay when heater delay and quench propagation velocity are input for each turn
 - Quench propagation: 18 m/s btw heating stations, 11 ms btw turns, 20 ms btw layers

T. Salmi and M. Prioli, FCC week 2018