

U.S. MAGNET DEVELOPMENT PROGRAM

US-MDP Nb₃Sn Cos-theta Magnets

FCC Week in Amsterdam, April 9-13, 2018

Alexander Zlobin/Emanuela Barzi

US Magnet Development Program Fermi National Accelerator Laboratory

Outline

The U.S. Magnet Development Program Plan

mmm

BERKELEY L

S. A. Gourtey, S. O. Prestemon Lawrence Berkeley National Laboratory Berkeley, CA 94720

A. V. Zlobin, L. Cooley Fermi National Accelerator Laboratory Batavia, IL 60510

D. Larbainsber Florida State University and the National High Magnetic Field Laboratory Tallahassee, FL 32310

JUNE 2016

🛟 Fermilab

MAGLAB

Nb₃Sn Cos-theta dipole program plan and steps

- Step 1: 15 T dipole demonstrator
- Step 2: 15 T dipole demonstrator + utility structure
- Step 3: 16-17 T dipole with stress management
- Large-aperture Nb₃Sn dipoles: 120-mm aperture dipoles with stress management for HTS coil test
- Conclusions

Nb₃Sn Cos-theta Magnet R&D Plan

- Step 1: 15 T dipole demonstrator design.
 - Explore target field and force range.
 - Serve as technical and cost bases for comparison with new concepts.
 - Is an opportunity for program integration, particularly in the area of support structure design, and for exploration of different mechanical structures.
 - Most cost effective way to exceed the field obtained 20 years ago in the LBNL D20 dipole.

MDP 15 T Dipole Demonstrator Design

- ≻ <u>Coil:</u>
 - 60-mm aperture, 4-layer graded coil
 - W_{sc} = 68 kg/m/aperture

- Mechanical structure:
 - Thin StSt coil-yoke spacer
 - Vertically split iron laminations
 - Aluminum I-clamps
 - 12-mm thick StSt skin
 - Thick end plates and StSt rods
 - Cold mass OD<610 mm

- ➤ Cable:
 - L1-L2: 28 strands, 1 mm RRP150/169
 - L3-L4: 40 strands, 0.7 mm RRP108/127
 - 0.025 mm x 11 mm SS core
 - Insulation: E-glass tape

RRP-108/127 0.7 mm

-.....

SSL and Design Field (or Magnet Design Limit)

ENERGY Office of Science

Magnet Parameters at 4.5 (1.9*) K

Parameter	D20 (LBNL)	HD2 (LBNL)	FRESCA2 (CERN)	HFDD (MDP)
Test year	1997	2008	2017	2018 (plan)
Max bore field [T]	13.35 (14.7*)	15.4	16.5 (18*)	15.2 (16.5*)
Design field Bdes [T]	13.35	15.4	13	15
Design margin Bdes/Bmax	1.0 (0.9*)	1.0	0.8 (0.7*)	0.96 (0.89*)
Tested Bmax [T]	12.8 (13.5*)	13.8	~13	TBD
St. energy at Bdes [MJ/m]	0.82	0.84	4.6	1.7
F _x /quad at B _{des} [MN/m]	4.8	5.6	7.7	7.4
F _x /quad at B _{des} [MN/m]	-2.4	-2.6	-4.1	-4.5
Coil aperture [mm]	50	45	100	60
Magnet (iron) OD [mm]	812 (762)	705 (625)	1140 (1000)	612 (587)

Fabrication Status

- All coil parts and structural components are available.
- Coil and mechanical structure fabrication is in progress.

Mechanical Structure

Iron Laminations

StSt Skin

AL I-Clamps

End Plates

Fillers

Axial Rods

Coil Components

Cable (FNAL)

L2

L4

- 420 m of 28-strand cable (4UL)
- 350 m of 40-strand cable (3UL)

Ti and Glidcop Wedges Ti poles and spacers, SS saddles

ENERGY

Office of Science

Tooling

- Reaction/impregnation (2 sets)
 - o **L1-L2**
 - o **L3-L4**
- Yoking

Yoking tooling

Mechanical Models

Models:

- 5 cm long
- 1 m long

MM components:

- Iron laminations
- Al I-clamps
- Coil-yoke shim
- Instrumented "dummy" Al coils (short and full-size)

<u>Goals:</u>

- To test all main components of the mechanical structure and tooling.
- To develop a coil assembly plan and pre-stress targets.
- To check instrumentation.
- For FEA validation.

L3/L4 (Outer) Coil Fabrication

Coil #1

- Coil <u>winding-curing-</u> <u>reaction-impregnation</u> is complete
 - 8 witness samples tested
- Coil size was measured
- Damaged due to shell buckling

Coil #2

- Coil <u>winding-curing</u> is complete
- Short in the transition cable has been found and repaired
- Strand damage was found in transition area

Coil #3

- Coil <u>winding-curing-reaction-</u>
 <u>impregnation</u> is complete
 - 7 witness samples tested
- Coil size measurements in progress

Coil #4 (to replace coil #1)

- Coil <u>winding</u> in progress
 - Coil parts from coil #2
 - Cable is available

Coil #5 (spare coil)

Need coil parts and cable

L1/L2 (Inner) Coil Fabrication

Coil #1

- Coil <u>winding-curing-reaction</u> is complete
- Preparation to impregnation in progress

Coil #2

- Coil <u>winding-curing</u> is complete
- Preparation to reaction in progress

Coil #3 (spare coil)

- Coil <u>winding-curing</u> is complete
- Coil stored in holding fixture

Office of Science

Coil Heat Treatment Optimization

Step 2: Utility Structure with Key&Bladder Technology

Step 2: A successful series of magnets will provide a platform for performance improvement.

60 mm aperture B_{des}~15 T

- Utility structure parameters:
 - $\circ~$ Al shell OD: 750 mm
 - Al shell thickness: 75 mm
 - \circ Coil-pack horizontal and vertical size: 320 mm
- Next steps:
 - Design studies are complete (M. Juchno)
 - Engineering design FY2018
 - Fabrication FY2019
- 15 T demonstrator assembly and test in FY2019

Step 3: 60-mm aperture 16 T Dipole

18.5

18.0

17.5

17.0

16.0

🔶 BL 4.2 K

🗕 BL 1.9 K

quench field (T)

Bore

BL

15.61

16.25

11.34

25.61

1.65

OC

IC

Parameter

Bore field, T

Peak field, T

Inductance, mH/m

Stored energy, MJ/m

Current, A

SM

16.07

16.44

10.80 35.42

2.06

OC

IC

Next steps: 120 mm 2-layer and 4-layer dipoles

Coil Stress Management Technology

- Two possible end designs and technologies:
 - Design 1: winding with spacers;
 - Design 2: winding into slots.

Cos-theta Dipole Test in Utility Structure

- Fabrication of 15 T dipole demonstrator is in progress:
 - $\circ\,$ Design and procurement are complete.
 - \odot Coil fabrication is in progress.
 - $\,\circ\,$ Mechanical structure is being tested.
 - $\circ\,$ Magnet test is scheduled for September of FY18.
- Design study of 16 T dipole with small aperture is complete:
 - $\circ\,$ Ready to start SM coil technology development.
- Design studies of magnet Utility Structure are complete:
 - $\odot\,$ Engineering design is next.
- Design studies of large-aperture 15 T dipole continue.

- FNAL: J. Carmichael, V.V. Kashikhin, S. Krave, I. Novitski, C. Orozco, S. Stoynev, D. Turrioni, G. Velev, A.V. Zlobin, Techs: A. Rusy, L. Ruiz, S. Johnson, J. Karambis
- LBNL: S. Caspi, M. Juchno, M. Martchevskii et al.
- CERN: D. Schoerling, D. Tommasini et al.
- FEAC/UPATRAS: C. Kokkinos et al.

