

Low-luminosity D1 for FCC

FCC week 2018 at Amsterdam Kento Suzuki, Toru Ogitsu, Tatushi Nakamoto, and Michinaka Sugano

High Energy Accelerator Research Organization (KEK)

1

Introduction

- At the present plan, 2 IRs will expected to be open for 'low-luminosity' experiments ($\beta^* = 3 \text{ m}$), which will be combined with the injection regions (**L** and **B**)
- Design study on the separation dipole (D1) has started in KEK since 2015, and now is updated according to the latest design parameters as presented by Daniel

B

Inj. + Exp.

2.8 km - extraction

Exp.

1.4 km

Ini. + Exp.

J

B-col

Parameters on FCC D1

Primarily given parameters

- Nominal dipole field (B₁) : **12 T**
- Aperture : 100 mm
- Magnet length : 10.2 m

Consider to use the FCC Nb₃Sn technology as with the 16 T dipole (EuroCirCo1-P1-WP5)

- Secondarily given parameters Ref. A. Ballarino and D. Tommasini in FCC week2017
 - Strand Φ : **< 1.1 mm**
 - Num. of strands : < 40
 - RRR of the copper : 100
 - Keystone angle : < 50°
 - Cable compaction factor : < 0.14
 - Working temperature : 1.9 K
 - Cu/non-Cu : >1.0:1

Starting params. for the cable design

- The following variables are tentatively fixed through this study, and will be given feedbacks from the later analyses (quench analysis, 3D modeling etc.)
 - Filament Φ : 20 μ m
 - Cable insulation thickness : 0.15 mm
 - Compaction factor
 - ✓ at the thin edge : 0.10
 - ✓ at the thick edge : ~0.055
 - Cu/Non-Cu ratio: 1.7-3.0
- The floating numbers in this study:
 - Num. of strands along the cable highet (N₂) : 16-20
 - Strand Φ : <1.1 mm
 - Keystone angle is calculated according to the # of strands, diameter, and the compaction factor
 - ✓ Keystone angle : 0.24-0.32°

N₂=16-20

Contraction factor : 0.003 (fixed)

Consideration on the J_E requirement

$$\int_{T_{c}}^{T_{\max}} \frac{A_{Cu}}{A} \frac{S(T,B)}{\rho_{Cu}(T,B,RRR)} dT = \int_{0}^{t_{\max}} J_{E}^{2}(t) dt$$

$$= \int_{0}^{t_{delay}} J_{E}^{2}(0) dt + \int_{t_{delay}}^{t_{\max}} J_{E}^{2}(0) e^{-2\frac{t-t_{delay}}{\tau}} dt$$

$$= \int_{0}^{t_{delay}} J_{E}^{2}(0) dt + \int_{t_{delay}}^{t_{\max}} J_{E}^{2}(0) e^{-2\frac{t-t_{delay}}{\tau}} dt$$

$$= J_{E}^{2}(0) \cdot t_{delay} + \frac{\tau}{2} J_{E}^{2}(0)$$

$$S = f_{Cu}S_{Cu} + f_{nonCu}S_{nonCu}$$
Volumetric heat capacity
of Nb₃Sn (Refered to 'alternative fit' in [1])
$$\begin{bmatrix} 1 \\ https://espace.cern.ch/roxie/Documentation/Materials.ndf \end{bmatrix}$$

 $T_{\rm max}$ =350 K, $t_{\rm delay}$ = 40 ms, RRR = 100

intation/ waterials.put

Cu/NCu=1.7 155.6 93.6 52.4 24.6	
	4.7
τ (ms) Cu/NCu=2.3 213.7 135.8 85.2 50.5	25.7
Cu/NCu=3.0 265.4 173.8 114.3 75.5	44.3

Consideration on the J_E requirement

To gain τ >100 ms for various Cu/NCu, the first constraint on J_E would approximately be 600 A/mm²

$T_{max} = 350 \text{ K}, t_{delay} = 40 \text{ ms}, \text{ RRR} = 100$								
J _E (A/mm²)		600	700	800	900	1000		
τ (ms)	Cu/NCu=1.7	155.6	93.6	52.4	24.6	4.7		
	Cu/NCu=2.3	213.7	135.8	85.2	50.5	25.7		
	Cu/NCu=3.0	265.4	173.8	114.3	75.5	44.3		

Strategy

- 1. Magnet design is done using ROXIE ver.10.3.1 (on the 2D basis)
 - J_c -B curve of Nb₃Sn is from 'EuroCirCo1-P1-WP5'
- 2. Optimize the num. of conductors and coil geometry for various cable designs such that multipoles are **below 1 unit** for the nominal dipole field (12T)
 - Cu/NonCu is varied from 1.7 to 3.0, which is to further be tuned according to the later quench analysis
- 3. Then, see if the resultant J_E is around 600 A/mm²
- 4. After the optimization, the quench analyses are performed to give the 2nd feedback to the design study (C)

NOTE: The study is still ongoing

KEK first magnet design

Double-layered 6-blocks magnet (double pancake coil)

Inner (outer) radius of yoke : 100mm (300mm)

No optimization for iron yoke geometry !! (*e.g.* no HX hole yet)

After 1st the geometry optimization

Strand Φ (mm)	Total # of strands	Total # of conductors	B ^{nominal} (T)	Inominal (A)	J _E (A/mm²)	B ^{peak} (T)		Self inductance (mH/m)
						Inner	Outer	
	32	62	12.002	16100	790.85	12.697	11.576	-
	34	63	12.003	15980	738.78	12.688	11.506	-
	36	63	12.002	16290	711.30	12.631	11.379	-
0.9	38	62	12.004	16820	695.78	12.682	11.325	6.9
	40	63	12.004	16780	659.41	12.611	11.347	7.2
	32			Und	er optimizatio	n		
1.0	34	59	12.003	17640	660.60	12.688	11.263	6.3
	36	57	12.001	18450	652.52	12.652	11.323	5.9
38 Under optimizat		er optimizatio	n					
	40	57	12.004	18890	601.11	12.620	11.147	5.8

After 1st the geometry optimization

We get J_{E} ~600A/mm² for (Φ , $N_{strands}$)=(1.0mm, 40)

Harmonics

Large variation in b3 attributes from the smaller yoke inner radius compared to the coil size

Operation margin

Cu/NonCu=1.7

Cu/NonCu=3.0

Large Cu/NonCu is still acceptable

Quench analysis

- To give the second feedback on the cable design
 - Tuning of the Cu/NonCu ratio
 - Modeling the magnet from scratch if necessary
- Assume 20 ms delay for the quench detection, and another 20 ms delay for quenching entire coil (40 ms in total)
- Quench simulation is performed by the handmade C++ base code (3D analysis)
 - Assume 'adiabatic' condition
 - Operation current is set to 105% of the nominal one
 - Since design of the coil-end is not complete yet, just extrude the straight part, and
 - Consider heat propagation in the longitudinal and turn-to-turn direction

✓ Not consider the layer-to-layer heat propagation

Current profile & Hotspot temperature

Longer current tail due to the lower resistivity for the larger Cu/NCu Even the large Cu/NCu (=3.0), the magnet cannot be protected as T_{Hot} exceeds 350 K **EXERCISENT** Further design study and crosscheck with ROXIE will be performed

Conclusion & prospect

- Design study on the FCC D1 magnet is being conducted in KEK
- We found the current magnet design was not suited for the magnet protection, and further study on the design optimization should be done
- We've just finished the 1st iteration for the present optics target, and the 2nd iteration will be performed according to the results presented here

SUPPLEMENT

Load line

Operation margin (For Cu/NCu=1.7)

Margin to quench (%)

Temperature margin (at T_{op} =1.9 K)

Operation margin (For Cu/NCu=3.0)

Margin to quench (%)

Temperature margin (at T_{op} =1.9 K)

Snapshot of the present design candidates

Strand Φ (mm)	0.9		1.0		
Num. of strands	38	40	34	36	40
Cable Height (mm)	17.1	18.0	17.0	18.0	20.0
Stored energy at <i>I=I</i> ^{nominal} (MJ/m)	0.98	1.0	0.98	1.1	1.0
Self inductance at <i>I=I</i> ^{nominal} (mH/m)	6.9	7.2	6.3	5.9	5.8

Large strand/cable size is preferable for reduction of J_E

