Heavy Neutrino search at FCC-ee

E. Graverini^{*}, A. Blondel[†] and N. Serra^{*}

*Universität Zürich †Université de Genève

Standard Model

- Successful theory:
 - Higgs boson \rightarrow observed
 - complete theory
 - consistent with high precision measurements

Problems!

- neutrinos oscillations: neutrinos have mass
- gravitational effects of extra (dark) matter observed
- small degree of *CP*_{SM} cannot explain large matter/antimatter asymmetry

"New Physics" out there

Standard Model

- Successful theory:
 - Higgs boson \rightarrow observed
 - complete theory
 - consistent with high precision measurements

Problems!

- neutrinos oscillations: neutrinos have mass
- gravitational effects of extra (dark) matter observed
- small degree of CP_{SM} cannot explain large matter/antimatter asymmetry

"New Physics" out there

- SM has only LH ν (and RH $\bar{\nu}$)
- Simple extension: enter neutrinos with RH chirality
 - Zero EW and color charge: "sterile"
 - Only couples to Higgs and SM neutrinos
 - Can be massive: "heavy neutral leptons", HNLs
- ► They appear in a number of BSM theories with wide number and mass range
- Dirac + Majorana mass terms (needed to explain smallness of ν masses)

Seesaw mechanism

$$\mathcal{L}^{D+M} = rac{1}{2} ar{N}_I^C M N_I$$
 with $M = \begin{pmatrix} 0 & m_D \ m_D & m_M \end{pmatrix}$ and $N_I = \begin{pmatrix}
u_L \
u_R^C \end{pmatrix}$

- mass-flavour mixing angles θ_f
- ▶ *n* HNLs: m_D , m_M become $n \times n$ matrices, $\theta_f \rightarrow \theta_{ff}$
- "Seesaw" mechanism: $|m_D| \ll m_M$
- mass eigenstates (for small θ):

The ν MSM

3 HNLs. Suitable values of mass and coupling allow to simultaneously explain:

- ν oscillations induced by massive states N_2 , N_3
- dark matter: N_1 with mass \sim keV
- disappearance of antimatter: leptogenesis due to Majorana term

- Mixes with SM neutrino ν_{α} via U_{α}^2
- Can occur in any process involving SM neutrinos...

- Mixes with SM neutrino ν_{α} via U_{α}^2
- Can occur in any process involving SM neutrinos...
- ... with a suppression of U_{α}^2

- Mixes with SM neutrino ν_{α} via U_{α}^2
- Can occur in any process involving SM neutrinos...
- ...with a suppression of $U_{lpha}^2 imes U_{eta}^2$

- Mixes with SM neutrino ν_{α} via U_{α}^2
- Can occur in any process involving SM neutrinos...
- ...with a suppression of $U_{lpha}^2 imes U_{eta}^2$
- ▶ Decays through emission of a Z^0 or W^{\pm} boson

How to look for HNLs?

- Dedicated hidden particle experiments
 - SHiP (beam dump, 0-BG)
 - from meson decays
 - Mathusla, CODEX-b, FASER, etc.

Collider searches

- from Z^0 , W^{\pm} bosons
- from precise EWP measurements
- ee: clear signature, easy analysis
- hh: large background, difficult triggering/analysis

HNLs at FCC-ee

- Neutrino counting from Z line shape
 - LEP: $N_{\nu} = 2.984 \pm 0.008$, uncertainty from theory and σ_{had}
 - FCC-*ee*: improve by factor 10–20 with $\mathcal{B}(\gamma Z_{inv}) / \mathcal{B}(\gamma Z_{\ell\ell})$
 - sensitivity $U^2 \sim 10^{-4}$ for sterile neutrino search
- Direct search in Z decays
 - production in $Z^0 \rightarrow \nu N$ mixing
 - decay: 2 jets + lepton/ E_{miss} (CC), or 2 leptons + E_{miss} (NC)
 - clean events, background killed by SV displacement
 - displaced vertex search: focus of this talk

Experimental conditions

• $1.5 \times 10^{12} Z^0 \text{ yr}^{-1} \times 6 \text{ yr}$

[P.Janot, FCCw2017]

- Assuming $5 \times 10^{12} Z^0$ bosons
- ▶ 2 detector concepts: CLD/IDEA
 - tracker half-size $S \simeq 2 \text{ m}$
 - few μm vtx resolution, but SV can be outside the vertex detector
 - min. displacement $\Delta \equiv 100 \ \mu m$

Signature & backgrounds

Considering only di-lepton final states.

- W^*W^* , Z^*Z^* , $Z^*\gamma^*$ with $2\ell + 2\nu$ final state: min. SV displacement
- ▶ $Z \rightarrow \ell \ell$ with E_{miss} from ISR/FSR: min. SV displacement
- $Z \rightarrow \tau \tau \rightarrow 2\ell + 4\nu$: the two ℓ are almost back-to-back
- atmospheric ν interactions: candidate direction/topology

More background sources for $N \rightarrow W\ell \rightarrow qq\ell$, but fully reconstructed final state!

Signature & backgrounds

Considering only di-lepton final states.

- W^*W^* , Z^*Z^* , $Z^*\gamma^*$ with $2\ell + 2\nu$ final state: min. SV displacement
- ▶ $Z \rightarrow \ell \ell$ with E_{miss} from ISR/FSR: min. SV displacement
- $Z \rightarrow \tau \tau \rightarrow 2\ell + 4\nu$: the two ℓ are almost back-to-back
- atmospheric ν interactions: candidate direction/topology

More background sources for $N \rightarrow W\ell \rightarrow qq\ell$, but fully reconstructed final state!

Signature & backgrounds

Considering only di-lepton final states.

- W^*W^* , Z^*Z^* , $Z^*\gamma^*$ with $2\ell + 2\nu$ final state: min. SV displacement
- ▶ $Z \rightarrow \ell \ell$ with E_{miss} from ISR/FSR: min. SV displacement
- $Z \rightarrow \tau \tau \rightarrow 2\ell + 4\nu$: the two ℓ are almost back-to-back
- atmospheric ν interactions: candidate direction/topology

More background sources for $N \rightarrow W\ell \rightarrow qq\ell$, but fully reconstructed final state!

Estimating FCC-ee's sensitivity

- Exploring the ν MSM phase space in (U_f^2, m_N)
 - fixed U_f^2 ratios, of cosmological interest
- $[m_N]$ HNL boost from $e^+e^- \rightarrow Z^0 \rightarrow \nu N$
- [U²_f, m_N] lifetime based on the kinematically allowed decay channels: h⁰ν, h[±]ℓ[∓], 3ν, ℓ[±]_iℓ[∓]_jν_j, ℓ[±]_jℓ[∓]_jν_i, qq̄ν, qq̄ℓ
- $\begin{bmatrix} U_f^2, m_N \end{bmatrix}$ experimental acceptance: $\mathcal{P}_{vtx} \sim \int_{\Delta}^{S} e^{-l/\gamma c \tau} dl$
- $\left[\frac{U_f^2}{m_N}\right]$ final state efficiency:
 - all di-lepton final states taken visible
- ► $n_{HNL} \equiv n_{Z^0} imes \mathcal{B}\left(Z^0
 ightarrow
 u N
 ight) imes SES$

ν MSM parameter space

ν MSM parameter space

rate enhanced: on-shell $N \to W \ell$

FCC-ee's sensitivity to HNLs

- ▶ Best sensitivity above the charm mass + complementarity with BDF
- ▶ Higher vertexing resolution \longrightarrow larger couplings
- Larger sensitive area \longrightarrow smaller couplings

Conclusions

- Sterile neutrinos can solve several SM shortcomings
- Sensitivity studied in ν MSM context, but general validity
- FCC-*ee* at the Z^0 pole: down to $U^2 < 10^{-11}$ for large m_N
 - complementary to beam dump facility

[physics.ins-det/1504.04956]

How to improve

- ► minimum △ based on outer tracker resolution: it can be set much smaller for decays in the vertex detector!
- large external tracking volume (4-10 m)?
- $q\bar{q}\ell$ and $q\bar{q}\nu$ final states

[M.Dam, FCCw2017]

Backup slides

Independent analyses

- sensitivity confirmed by independent analyses
- long + short lifetime search
- sensitivity of individual subdetectors

[S. B. Nielsen, MSc thesis]

[hep-ph/1604.02420]

