ELECTROMAGNETIC CALORIMETRY BASED ON LIQUID ARGON FOR THE FCC-HH EXPERIMENTS

Anna Zaborowska, Martin Aleksa, Jana Faltova, Clement Helsens, Ana Henriques, Coralie Neubüser

FCC Week 2018 April 12, 2018

$\sqrt{s} = 100 \ TeV$

Consequences

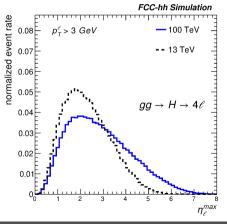
- more particles produced
- higher average and maximum $p_{\rm T}$

$\sqrt{s} = 100 \ TeV$

Consequences

- more particles produced
- higher average and maximum $p_{\rm T}$

$\begin{array}{l} \mbox{Requirements for EM calorimetry} \\ \bullet \ depth \geq 30 \ X_0 \end{array}$


$\sqrt{s} = 100 ~ TeV$

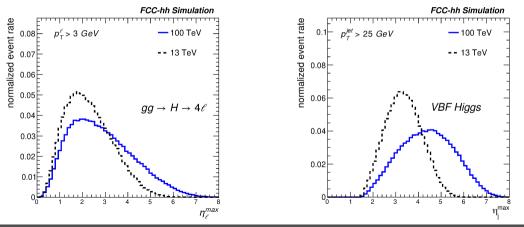
Consequences

- more particles produced
- higher average and maximum $p_{\rm T}$
- particles into forward region

Requirements for EM calorimetry

- $\bar{depth} \ge 30 X_0$
- precision tracking and calorimetry for $|\eta|<4$

18


$\sqrt{s} = 100 \ TeV$

Consequences

- more particles produced
- higher average and maximum $p_{\rm T}$
- particles into forward region
- Vector Boson Fusion jets into very forward region

Requirements for EM calorimetry

- $\bar{d}epth \ge 30 X_0$
- precision tracking and calorimetry for $|\eta|<4$
- efficient jet tagging for $|\eta|<6$

/18

Luminosity

peak: $30 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ integrated: 20 ab^{-1} for 25 y.

Consequences

• huge pile-up ($\langle \mu \rangle \approx 1000$ in ultimate scenario)

Requirements for EM calorimetry

- high granularity for pile-up rejection
- use of timing information
- combination with tracker information (particle flow technique)

Luminosity

peak: $30 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ integrated: 20 ab^{-1} for 25 y.

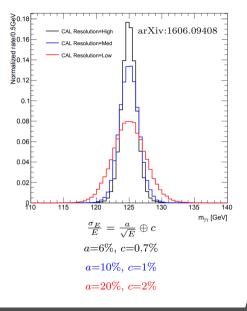
Consequences

- huge pile-up ($\langle \mu \rangle \approx 1000$ in ultimate scenario)
- strong requirements on radiation hardness

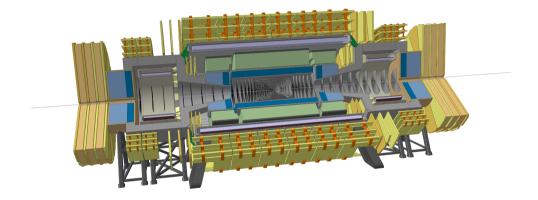
	1 MeV neutron	
	equivalent fluence	Dose
	$(n_{eq} cm^{-2})$	(MGy)
barrel	4×10^{15}	$\mathcal{O}(0.1)$
endcap	3×10^{16}	$\mathcal{O}(1)$
forward	5×10^{18}	5×10^3

Requirements for EM calorimetry

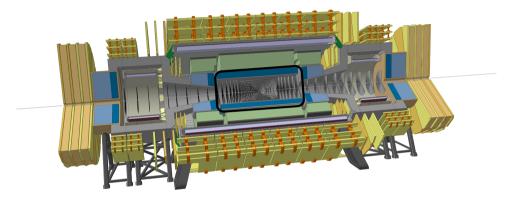
- high granularity for pile-up rejection
- use of timing information
- combination with tracker information (particle flow technique)
- choice of radiation hard materials, especially for high- η regions



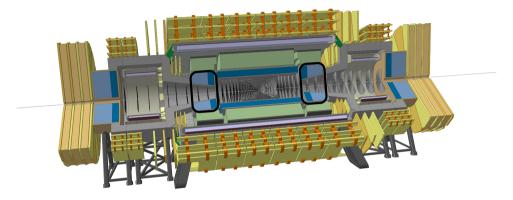
Requirements for EM calorimeter performance


• good energy resolution $\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$

design goal: a = 10%, c = 1%


- $\bullet~$ vertex identification
 - \circ tracker for e⁻, e⁺
 - $\circ~$ good pointing resolution for γ
- linearity of calorimeter response
- large detector acceptance
- fine granularity
 - $\circ~$ combination with tracker information
 - \circ 3D imaging
 - pileup mitigation
 - $\circ \pi^0$ rejection
 - $\circ~$ separation of boosted particles

18


Electromagnetic calorimeter

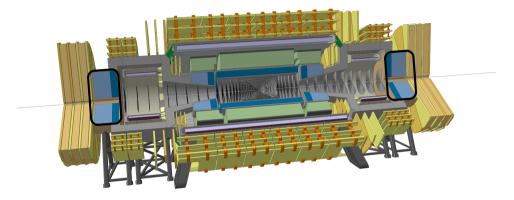
Barrel:

• $|\eta| < 1.5$

Anna Zaborowska

Electromagnetic calorimeter

Barrel:


• $|\eta| < 1.5$

Endcap:

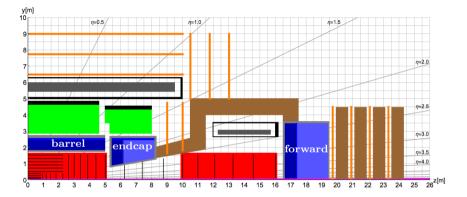
• $1.4 < |\eta| < 2.5$

Electromagnetic calorimeter

Barrel:

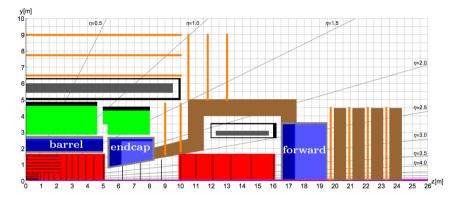
• $|\eta| < 1.5$

Endcap:

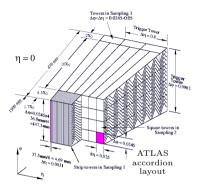

• $1.4 < |\eta| < 2.5$

Forward:

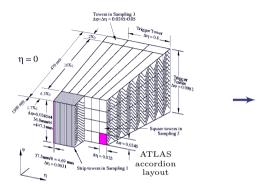
• $2.3 < |\eta| < 6$

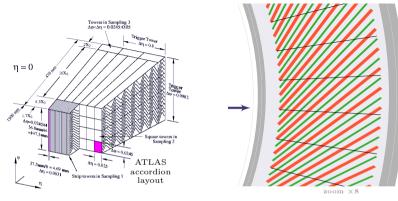


Electromagnetic calorimeter

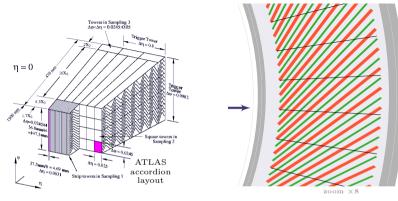

Electromagnetic calorimeter

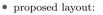
"Reference" detector: based on liquid argon


- used for barrel, endcap and forward detector (radiation hard)
- endcap and forward detector $(1.4 < |\eta| < 6)$ of hadronic calorimeter also based on liquid argon



Anna Zaborowska

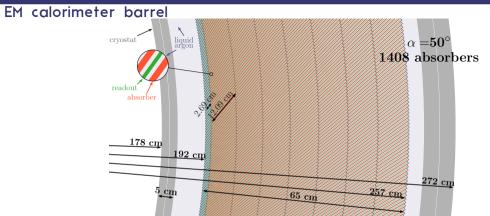

- much more granular than ATLAS calorimeter $(\times 10)$
- high longitudinal and lateral segmentation possible with straight, multilayer electrodes



- proposed layout:
 - liquid argon
 - plates inclined in transverse plane
 - absorber (lead, glue and steal)
 - printed circuit board (PCB)

18

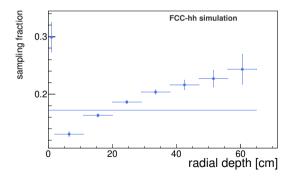
- much more granular than ATLAS calorimeter ($\times 10$)
- high longitudinal and lateral segmentation possible with straight, multilayer electrodes



- liquid argon
- plates inclined in transverse plane
- absorber (lead, glue and steal)
- printed circuit board (PCB)

18

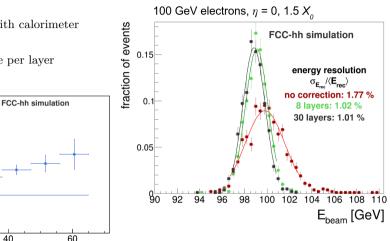
- much more granular than ATLAS calorimeter $(\times 10)$
- high longitudinal and lateral segmentation possible with straight, multilayer electrodes
- + easier construction (inaccuracies enlarge the constant term)
- sampling fraction changes with calorimeter depth


- 2 mm absorber plates inclined by 50° angle
- $\bullet\,$ LAr gap increases with radius 1.15 mm –3.09 mm
- 8 longitudinal layers
- $\Delta\eta=0.01$ (0.0025 in 2nd layer), $\Delta\varphi=0.009$

10 cm

Calibration to EM scale

- sampling fraction changes with calorimeter radius
- calibration to EM scale done per layer



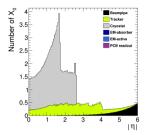
Calibration to EM scale

- sampling fraction changes with calorimeter radius
- calibration to EM scale done per layer

20

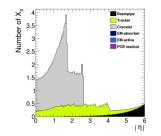
• significant improvement for 8 layers

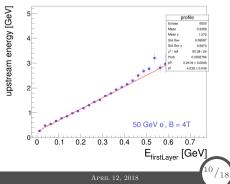
April 12, 2018

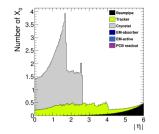

radial depth [cm]

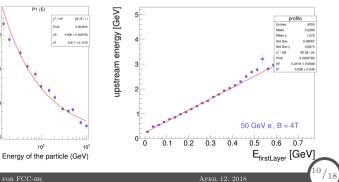
40

sampling fraction


0.3


0.2

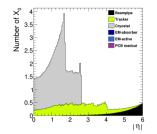


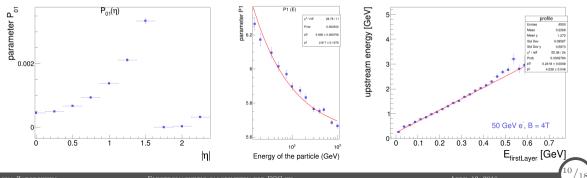

• linear correlation between energy deposited upstream and in the first layer

• linear correlation between energy deposited upstream and in the first layer

P1 (E)

10

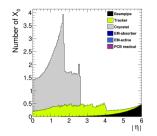

v²/ndf

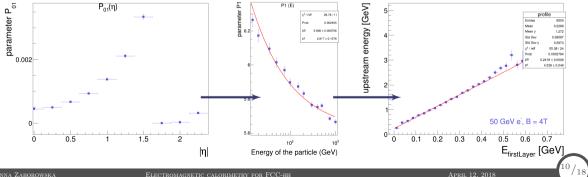

parameter F

5.8

5.6

• linear correlation between energy deposited upstream and in the first layer

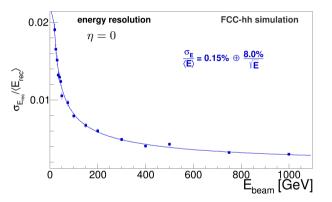




• linear correlation between energy deposited upstream and in the first layer

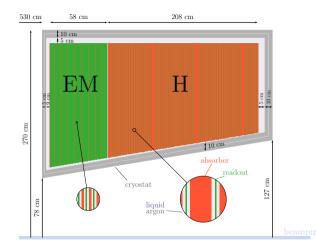
$$E_{\rm clu}^{\rm corr} = \sum_{cells} f_{\rm sampl}^{\rm layer} E_{\rm deposit} + E_{\rm upstream}$$

$$E_{\text{upstream}} = P_{00} + P_{01} \cdot E_{\text{clu}} + (P_{01} + \frac{P_{11}}{\sqrt{E_{\text{clu}}}}) \cdot E_{1\text{stLayer}}$$

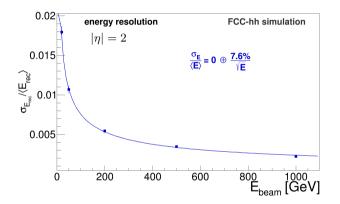


-

Performance for single particles

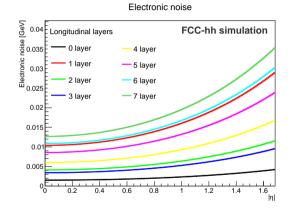

- simulation of single electrons
- no electronic or pile-up noise in detector
- reconstruction with sliding window algorithm $\Delta \eta \times \Delta \varphi = 0.07 \times 0.17$

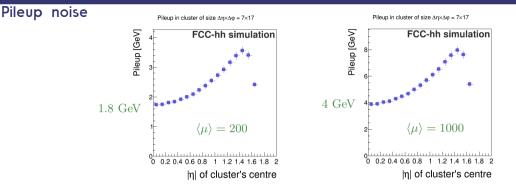
Endcaps layout


- both electromagnetic and hadronic calorimeters within same cryostat
- electromagnetic calorimeter
 - $\circ~1.5~\mathrm{mm}$ lead discs
 - $\circ~0.5~\mathrm{mm}$ LAr gap
- hadronic calorimeter
 - $\circ~2~{\rm cm}$ copper discs in H
 - $\circ~2~\mathrm{mm}$ LAr gap
- forward calorimeter simulated with same layout
 - $\circ~0.1~{\rm mm}$ LAr gap
 - $\circ~1~{\rm cm}$ copper discs in EM
 - $\circ~4~{\rm cm}$ copper discs in H

Performance for single particles

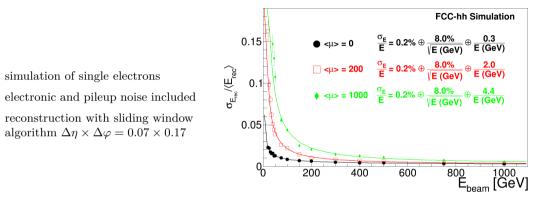
- simulation of single electrons
- no electronic or pile-up noise in detector
- reconstruction with sliding window algorithm $\Delta \eta \times \Delta \varphi = 0.07 \times 0.17$
- no constant term due to constant and ideal ratio LAr/absorber




Electronic noise

Preliminary estimations

- extrapolation from ATLAS electronics
- electronic noise estimated for PCB readout (additional capacitance)
- plot presents noise per one cell $\Delta \eta \times \Delta \varphi = 0.01 \times 0.009$ for each detector layer
- noise in cluster of size $\Delta \eta \times \Delta \varphi = 0.07 \times 0.17$ approx. 300 MeV



- estimation from minimum bias events' simulation
- noise calculated for clusters
- additional contribution from out-of-time pile-up as correction factor (~ 1.5) not included in the plots as like for HL-LHC it is planned to suppress the out-of-time pile-up contribution to a large extent.

The (enormous) in-time pile-up will need to be suppressed by rejecting energy deposits from pile-up vertices tagged by the inner tracker (to be studied).

Performance for single particles

Size of clusters needs still to be optimised to contain a large fraction of the shower and the smaller amount of pile-up (optimised sliding window cluster or topo-cluster).

• reconstruction with sliding window algorithm $\Delta \eta \times \Delta \varphi = 0.07 \times 0.17$

• simulation of single electrons

•

Di-photon invariant mass

Invariant mass for two photon events (E_v>40GeV)

> 0.05 **FCC-bh Simulation** <u> = 0 Events / 0.5 0 <u> = 200 <u> = 1000 0.03 0.02 0.01 122 130 124 126 128 132 134 m_{yy} [GeV]

• simulation of ${\rm H}\to\gamma\gamma$

- pile-up scenarios $\langle \mu \rangle = 0$, $\langle \mu \rangle = 200$ and $\langle \mu \rangle = 1000$
- reconstruction with sliding window algorithm $\Delta \eta \times \Delta \varphi = 0.07 \times 0.17$

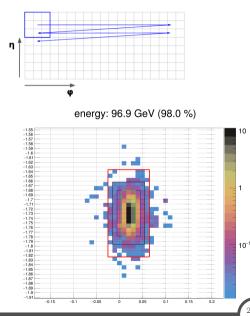
It is obvious that efficient in-time pile-up suppression will be crucial.

This pile-up contribution is basically independent of the chosen active material of the EM calorimeter. A small reduction of in-time pile-up is expected for W absorbers.

Summary

- LAr detector studied as a reference for FCC-hh experiments
 - $\circ~$ electromagnetic calorimeter in $|\eta|<6$
 - $\circ~$ hadronic calorimeter in $1.4 < |\eta| < 6$
- with optimised layout achieved the goal resolution
 - $\circ~{\rm sampling~term}\sim 8\%$
 - $\circ~{\rm constant~term} < 0.2\%$
 - $\circ~$ noise term highy depends on the pile-up
- pile-up the main challange for any calorimeter
- tackle the pile-up with:
 - \circ readout system (out-of-time)
 - $\circ~$ optimised reconstrution algorithms (in-time)
 - tagging pile-up in tracker (in-time)

Backup


Reconstruction

Sliding window algorithm

- Reconstruction of electrons in photons
- Based on https://cds.cern.ch/record/1099735
- 1. Calorimeter towers with fixed $\Delta \eta \times \Delta \varphi$ size

2. Seeding

- $\circ~$ Scanning the $\Delta\eta\times\Delta\varphi$ to wer map with a fixed size window for local maxima
- $\circ~$ If energy inside window is above threshold \longrightarrow mark as pre-cluster
- 3. Barycentre position calculation
 - $\circ~$ Energy-weighted position for each pre-cluster
- 4. Duplicates removal
 - If two pre-clusters are next to each other, the pre-cluster with lower energy is removed
- 5. Cluster building
 - $\circ~$ Each step (1-4) can use window of different size (centred around the tower seed)

