

Michele Selvaggi (CERN)

D. Jamin, C.Helsens, M. Mangano, G.Ortona, A.Sznajder

FCC week 2018 - 11/04/2018 - Amsterdam

Higgs & EWSB @FCC-hh

and

Why measuring Higgs @FCC-hh?

LHC

- Higgs precision measurements are guaranteed deliverables, because we know the Higgs exists...
- Potential deviations on Higgs couplings might indicate presence of new physics
- FCC-hh provides complementary measurements to FCC-ee:
 - rare decays (BR($\mu\mu$), BR(Z γ), ratios, ...) measurements will be statistically limited at FCC-ee
 - top Yukawa and Higgs self-coupling
- Directly test unitarisation of VBS by measuring W_LW_L and Z_LZ_L (not accessible at HL-LHC)

FCC-ee

in %	FCC-ee 240 GeV	+FCC-e 350 Ge\
g нz	0.21	0.21
9 нw	1.25	0.43
9 нь	1.25	0.64
9 нс	1.49	1.04
9 Hg	1.59	1.18
Янτ	1.34	0.81
Ο Ημ	8.85	8.79
Янγ	2.37	2.12
Гн	2.61	1.55

Higgs production at FCC-hh

COCCOCC		<i>_H</i>
$\bigcirc g \\ g \\ g \\ g \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	×	

	σ(13 TeV)	σ(100 TeV)	σ(100)/σ(13)
ggH (N ³ LO)	49 pb	803 pb	16
VBF (N ² LO)	3.8 pb	69 pb	16
VH (N ² LO)	2.3 pb	27 pb	11
ttH (N ² LO)	0.5 pb	34 pb	55

	N_{100}	N_{100}/N_8	N_{100}/N_{14}
$gg \to H$	16×10^9	4×10^4	110
VBF	1.6×10^9	5×10^4	120
WH	3.2×10^8	2×10^4	65
ZH	2.2×10^8	3×10^4	85
$t ar{t} H$	$7.6 imes 10^8$	3×10^5	420
		Ť	1

$$N_{100} = \sigma_{100 \text{ TeV}} \times 20 \text{ ab}^{-1}$$

 $N_8 = \sigma_{8 \text{ TeV}} \times 20 \text{ fb}^{-1}$
 $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

- - higher S/B
 - smaller impact of systematics

Large statistics will allow to isolate cleaner samples in regions with:

Higgs N(pt > pt, min)

- will have at disposal, $o(10^6)$ Higgs bosons at pT(H) > 1 TeV •
- - heavy states running in the loop
 - complementary to Hgg measurement in e+ e-

ttH (VBF) overcomes ggH at p_T > 800 (2000) GeV, distinctive signatures can be used Higgs pT spectrum is an indirect probe for new physics modifying, e.g. ggH coupling

Outline

- with exception on ttH):
 - $ttH \rightarrow bb boosted$
 - Η→χχ,
 - $H \rightarrow ZZ \rightarrow 4I$
 - Η→μμ
 - $H \rightarrow Z \chi$
- All signal and background samples have been generated via the following chain (using the FCCSW): •
 - MG5aMC@NLO + Pythia8

 - full list of signal prod. modes simulated (ggH with finite m_{top})
 - **Delphes-3.4.2** with baseline FCC-hh detector •
 - Full list of samples can be found here:

http://fcc-physics-events.web.cern.ch/fcc-physics-events/LHEevents.php

• Will discuss prospects for Higgs coupling measurements at FCC-hh, by looking at following processes (all decays

• LO (MLM) matched samples (up to 1/2/3 jets) and global K-factor applied to account for N^{2/3}LO corrections

Top Yukawa

- Several possibile channels to measure top yukawa: •
 - ttH \rightarrow bb, boosted [arXiv:1507.08169]
 - $ttH \rightarrow WW, ZZ \rightarrow multileptons$ (in progress)
 - ttH $\rightarrow \chi\chi$ (in progress)
- ttH and ttZ have very similar production dynamics, with highly correlated systematics:
- $\sigma(ttH)/\sigma(ttZ)$ can be predicted with < 1% precision across a large kinematic range

Measurement

- Measure ttH/ttZ ratio in the $H \rightarrow bb, Z \rightarrow bb$ channel
- Final state:
 - boosted Higgs, $H \rightarrow bb$
 - boosted top hadronic
 - other top leptonic decay
- Signature:
 - 2 fat-jets,
 - I lepton,
 - MET, (+ I bjet)
- Backgrounds:
 - ttZ,
 - tt+jets,
 - tt+bb
 - W/Z+jets ignored for now

7

Top Yukawa

- tt+jets rate from side band CR (m_j > 160 GeV)
- assuming shape of tt+jets under control.. (to be studied)

Measure top Yukawa by measuring $\sigma(ttH)/\sigma(ttZ)$

• $N_{ttZ} / N_{ttH} = 0.533 + - 0.004$ (stat)

 $\rightarrow \delta_{\text{stat}}(N_{\text{ttZ}}/N_{\text{ttH}}) \approx 0.7 \%$

 \rightarrow assumes background yield under control \leq 1% (enough statistics in the side bands)

• To be studied:

 \rightarrow impact of background shape

$$\delta y_t / y_t \lesssim I \%$$

Higgs decay studies

- $H \rightarrow \mu \mu$, $H \rightarrow Z \gamma$) for various scenarios.
- Consider the following categories of uncertainties:
 - δ_{stat} = statistical •
 - δ_{prod} = production + luminosity systematics (1-2%)
 - $\delta_{eff}(i)(p_T) = object$ reconstruction (trigger+isolation+identification) systematics
 - = 0, background (assume to have ∞ statistics from control regions) δΒ •

 Assume the following baseline for reconstruction efficiency uncertainties δ_{eff} (i) (pT)

• Will show prospects for S/B and precision on the signal strength $\delta\mu/\mu$ in the following channels ($H \rightarrow \gamma\gamma$, $H \rightarrow 4I$,

Higgs decay studies

- backgrounds falls more steeply)
- **Propagate systematics** based on average p_T of Higgs decay product
 - ex: $H \rightarrow \mu \mu$, with $p_T(H) > 50$ GeV:
 - $p_T(\mu_I) \sim 100 \text{ GeV} \rightarrow \delta_{eff}(\mu) \approx 0.30\%$
 - $p_T(\mu_2) \sim 50 \text{ GeV} \rightarrow \delta_{eff}(\mu) \approx 0.50\%$
- Assume (un-)correlated uncertainties for (different) same final state objects
- Following scenarios are considered:
 - δ_{stat} \rightarrow stat. only (I) δ_{stat} , δ_{eff} \rightarrow stat. + eff. unc. (II)

 - δ_{stat} , δ_{eff} , $\delta_{\text{prod}} = 1\% \rightarrow \text{stat.} + \text{eff. unc.} + \text{prod (III)}$

Given how uncertainties scale with p_T , makes sense to explore sensitivity at large $p_T(H)$ (also qq produced)

Backgrounds:

- irreducible: QCD yy production •
- reducible. : γ + jets (ignored for now)

Analysis cuts

- $p_T(y) > 30 \text{ GeV}, |\eta(y)| < 4.0$
- variable $p_T(H)_{min}$
- $|m_{\chi\chi} m_H| < 2.5 \text{ GeV}$

$H \rightarrow ZZ^* \rightarrow 4$

Analysis cuts:

- 40. $< m_{Z1} < 120.$
- $12. < m_{Z2} < 120.$
- $p_T(l) > 10 \text{ GeV}, |\eta(\gamma)| < 4.0$
- 122.5 < m₄₁ < 127.5 GeV

 \rightarrow asymmetric cut due to FSR tail

background free analysis at high pT !

- $\delta \mu / \mu \approx 1$ % precision can be achieved up to $p_{T}(H) = 500$
- At low pT systematics will limit the measurement

12

н μμ

• Very small BR(H $\rightarrow \mu\mu$) ~ 2.18e-04, \rightarrow %-level precision out of reach at FCC-ee

Analysis cuts

- p_T(μ) > 20 GeV, |η(μ)| < 4.0
- $|m_{\mu\mu} m_H| < I \text{ GeV}$

$\delta \mu / \mu \approx 1$ % stat. precision can be achieved up to $p_T(H) = 300 \text{ GeV}$

10¹² **10**¹¹ **10**¹⁰ 10 10⁸ 10⁷ 10⁶ 10⁵ 10⁴ 10^{3} 10² 10 110

events / 0.6 GeV 200 000

3000

2000

1000

events / 0.3 GeV

$H \rightarrow Z X \rightarrow H X$

- BR(H \rightarrow Z χ^*) ~ 1.5e-03,
- irreducible: Ζγ

Simple cut and count strategy:

- $75 < m_{Z1} < 105$.
- $p_T(I) > 20 \text{ GeV}, |\eta(I)| < 4.0$
- $p_T(y) > 15 \text{ GeV}, |\eta(y)| < 4.0$
- $122.5 < m_{II\chi} < 127.5 \text{ GeV}$ •

$\delta \mu / \mu \approx 1$ % stat. precision can be achieved up to $p_T(H) = 200 \text{ GeV}$

Comments

- (2-3% ?) for absolute measurement will be hit well before the full 20-30 ab⁻¹ @100 TeV
- of BRs:
 - BR($\mu\mu$)/BR(4I) or BR($\mu\mu$)/BR($\gamma\gamma$)
 - $BR(Z\gamma)/BR(4I)$ or $BR(Z\gamma)/BR(\gamma\gamma)$

 \rightarrow stat only (sub)-percent precision can be reached (provided absolute measurement given by Higgs factories)

 \rightarrow assume we have good control of relative fraction of various production modes.

• Statistics are so large (even for the rare decays) is most cases that the systematics (or lumi) wall

• In order to cancel systematics (from production, luminosity, etc..) a possibility is to measure ratios

15

Ratios of BRs

% precision (including systematics) within reach

- assumes 100% between e, y systematics

Ratios of BRs

I % precision (including systematics) within reach

VBS

- A Higgs of I25 GeV has been observed at LHC but new physics may still be hidden in EWSB
- Energy growth of (TGC+QGC) is tamed by HIGGS exchange !
- New physics could disturb this delicate unitarity balance involving longitudinally polarized VBS → rate increase

VBS

•VVjj cross sections, EWK contribution only (mJJ > 500 GeV)

- W[±]W[±] j j \rightarrow 2l2vjj \approx 146 fb (small "QCD" contribution)
- Z Z j j \rightarrow 4ljj \approx 27 fb (large "QCD" contribution x4 here)

Assessments on the expected precision for:

- •VBS cross section in $W_L W_L \rightarrow 2I2v$ (same sign) and $Z_L Z_L \rightarrow 4I$
- Discovery potential for longitudinal scattering
- Very crude (PRELIMINARY) statistical estimate of the sensitivity:
 - assume $V_T V_T$ and $V_T V_L$ are known and are background, together with **QCD** VVii
 - compute stat. significance of $V_L V_L$ signal

VBS (WW same sign)

Simple cut and count strategy:

- $p_T(l) > 20 \text{ GeV}, |\eta(l)| < 4.0$
- $p_T(j) > 30 \text{ GeV}, |\eta(j)| < 6.0$
- $\Delta \eta(j,j) > 2,5$
- m(j,j) > 500 GeV

20

Simple cut and count strategy:

- $p_T(l) > 20 \text{ GeV}, |\eta(l)| < 4.0$
- $p_T(j) > 30 \text{ GeV}$, $|\eta(j)| < 6.0$
- $\Delta \eta(j,j) > 3.5$
- m(j,j) > 1000 GeV

Conclusions & outlook

- The FCC-hh machine will produce > 10¹⁰ Higgs bosons
- Such large statistics open up a whole new range of possibilities •
- First look at some Higgs decay channels was presented using fast detector simulation and simple cut and • **count** analysis
- Measuring ratios of couplings (or equivalently BRs), allows to cancel systematics (1% precision on "rare" • couplings within reach after absolute HZZ measurement in e+e-)
- VBS longitudinal polarisations $V_L V_L$ can be measured at 1% level ($W_L W_L$ same sign) and 10% ($Z_L Z_L$)
- Extremely rich Higgs program at the FCC, that goes much beyond (light yukawa, Higgs off-shell width measurement, Higgs differentials)

Backup

Charm and light yukawa

- Probe in production:
 - Charge (charm) = Charge (bottom)
- Exclusive $H \rightarrow J/\psi \gamma$ decay $(J/\psi \rightarrow \mu\mu)$
- $VH \rightarrow || cc$

Mode	Branching Fraction $[10^{-6}]$		
Method	NRQCD [171]	LCDA LO [170]	LCDA NLO [173]
${\rm Br}(H o ho^0 \gamma)$	_	19.0 ± 1.5	16.8 ± 0.8
${\rm Br}(H o \omega \gamma)$	_	1.60 ± 0.17	1.48 ± 0.08
$Br(H \to \phi \gamma)$	_	3.00 ± 0.13	2.31 ± 0.11
${ m Br}(H o J/\psi \gamma)$	$2.79 {}^{+0.16}_{-0.15}$	_	2.95 ± 0.17
$\operatorname{Br}(H \to \Upsilon(1S) \gamma)$	$(0.61 {}^{+1.74}_{-0.61}) \cdot 10^{-3}$	_	$(4.61^{+1.76}_{-1.23}) \cdot 10^{-3}$
$\operatorname{Br}(H \to \Upsilon(2S) \gamma)$	$(2.02^{+1.86}_{-1.28}) \cdot 10^{-3}$	_	$(2.34^{+0.76}_{-1.00}) \cdot 10^{-3}$
$\operatorname{Br}(H \to \Upsilon(3S) \gamma)$	$(2.44^{+1.75}_{-1.30}) \cdot 10^{-3}$	_	$(2.13 {}^{+ \overline{0.76}}_{- 1.13}) \cdot 10^{-3}$

