

CEPC Status and Perspective

Yifang Wang Institute of High Energy Physics, Beijing

CEPC-SppC from Pre-CDR towards CDR

http://cepc.ihep.ac.cn

IHEP-CEPC-DR-2015-01 IHEP-AC-2015-01

CEPC-SPPC

Preliminary Conceptual Design Report

Volume II - Accelerator

The CEPC-SPPC Study Group March 2015

IHEP-CEPC-DR-2017-01 IHEP-AC-2017-01 CEPC-SPPC Progress Report (2015 - 2016) Accelerator The CEPC-SPPC Study Group April 2017

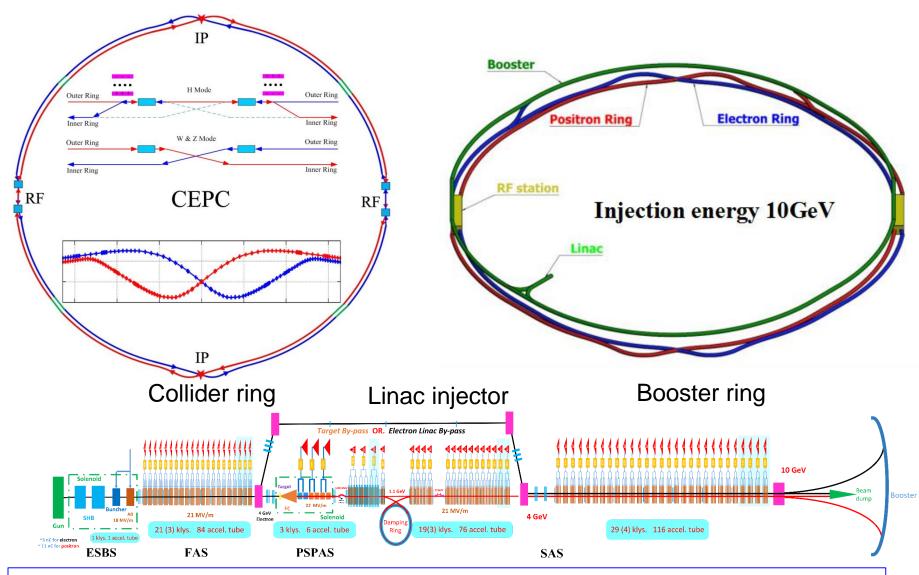
April 2017

CEPCSppC baseline and alternative decision processe recorded

CEPC-SPPC CDR (draft_v2) 中国科学院高能物理研究所 2017年11月6日

Nov 2017
CEPC-SppC CDR
Preliminary Draft during
CEPC-SppC Mini review

March 2015


Current Status of CDR

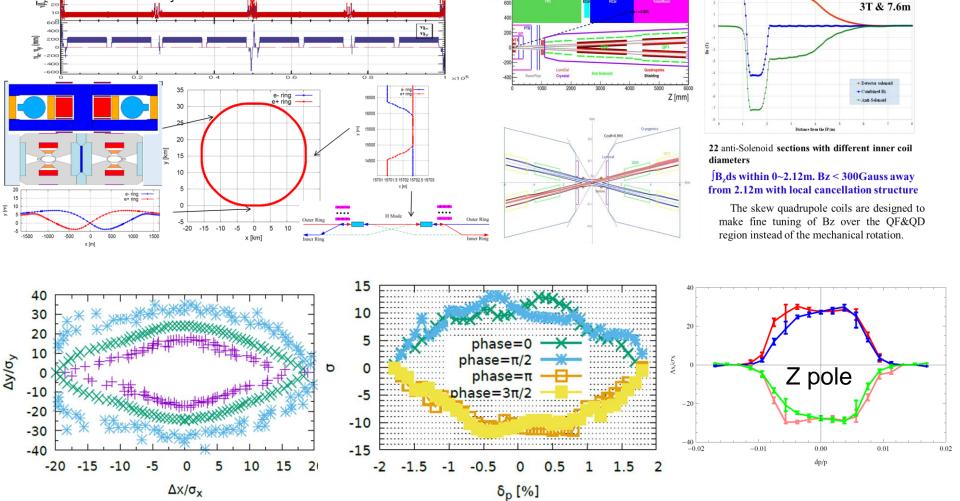
- A first draft at the end of last year. More international participation than pre-CDR
- A mini-international review was organized soon after and a lot of inputs was taken
- International review will be taken in June-July
- The final version is almost ready, to be published in summer
- TDR will start next year, hopefully more international participation

Motivation, physics case

- Capability of precision measurement, Higgs and Z factories (overview).
- Physics goals
 - Electroweak symmetry breaking: naturalness, nature of electroweak physics transition.
 - Dark sector searches through Higgs and Z exotic decays.
 - Connection to neutrino physics.
 - Connection to baryogenesis
 - Flavor physics at Z-factory
 - Precision QCD measurements

CEPC CDR Basseline Layout

Baseline: 100 km, 30 MW; Upgradable to 50 MW, High Lumi Z Try all means to cut cost down

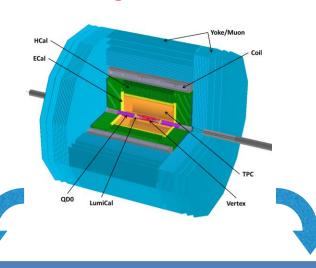

CEPC Collider CDR Design

√β_× √β_y

DAs of Higgs energy

tune= 363.10 / 365.22 (near integer with two IPs)

natural chromaticity= -493 / -1544

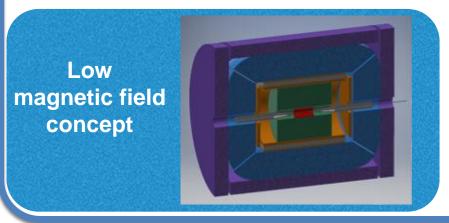

DA of Z-Pole energy

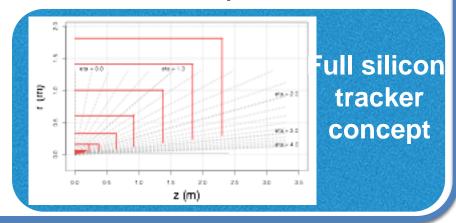
Main Parameters

	Higgs	W	Z (3T)	Z (2T)		
Number of IPs	2					
Beam energy (GeV)	120	80	45.5			
Circumference (km)	100					
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036			
Crossing angle at IP (mrad)	16.5×2					
Piwinski angle	2.58	7.0	23	3.8		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8	.0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)		
Beam current (mA)	17.4	87.9	46	1.0		
Synchrotron radiation power /beam (MW)	30	30	16	5.5		
Bending radius (km)	10.7					
Momentum compact (10 ⁻⁵)	1.11					
β function at IP β_x^*/β_v^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001		
Emittance $\varepsilon_r/\varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016		
Beam size at IP $\sigma_x/\sigma_y(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04		
Beam-beam parameters ξ_r/ξ_v	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072		
RF voltage $V_{RF}(GV)$	2.17	0.47	0.10			
RF frequency f_{RF} (MHz) (harmonic)	650 (216816)					
Natural bunch length σ_{z} (mm)	2.72	2.72 2.98 2.42		42		
Bunch length σ_{z} (mm)	3.26	5.9	8.5			
Betatron tune v_y/v_y	363.10 / 365.22					
Synchrotron tune v_s	0.065	0.0395	0.028			
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.	94		
Natural energy spread (%)	0.1	0.066	0.038			
Energy acceptance requirement (%)	1.35	0.4	0.	23		
Energy acceptance by RF (%)	2.06	1.47	1	.7		
Photon number due to beamstrahlung	0.29	0.35	0.55			
Lifetime _simulation (min)	100					
Lifetime (hour)	0.67	1.4	4.0	2.1		
F (hour glass)	0.89	0.94	0.99			
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1		

CDR Conceptual Designs

Baseline detector for CDR ILD-like (similar to pre-CDR)

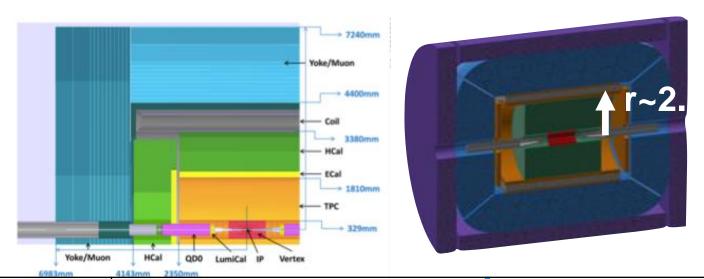



Impact parameter resolution less than 5 µm

Tracking resolution $\delta(1/Pt) \sim 2 \times 10^{-5} (GeV^{-1})$

.Jet energy resolution $\sigma_E/E \sim 30\%/\sqrt{E}$

Two alternative detector concepts



Final two detectors likely to be a mix and match of different options

CEPC major detector concepts

Baseline Concept

Alternative Concept

3 Tesla	2 Tesla	
6 layers of pixel sensors	Same	
TPC + Silicon tracker	Drift Chamber	
Particle flow inside solenoid	Dual readout outside solenoid	
3.4 m	2.1 m	
RPC or MPGD	RPC or MPGD	

Physics results in CDR mostly estimated with *full simulation* of baseline concept

CEPC Funding

HEP seed money

11 M RMB/3 years (2015-2017)

R&D Funding - NSFC

Increasing support for CEPC D+RDby NSFC 5 projects (2015); 7 projects(2016)

CEPC相关基金名称(2015-2016)	基金类型	负责人	承担单位
高精度气体径迹探测器及激光校正的研究 (2015)	重点基金	李玉兰/ 陈元柏	清华大学/ Tsinghua 高能物理研究所 IHEP
成像型电磁量能器关键技术研究(2016)	重点基金	刘树彬	中国科技大学 USTC
CEPC局部双环对撞区挡板系统设计及螺线管场补偿 (2016)	面上基金	白莎	高能物理研究所
用于项点探测器的高分辨、低功耗SOI像素芯片的 若干关键问题的研究(2015)	面上基金	卢云鹏	高能物理研究所
基于粒子流算法的电磁量能器性能研究 (2016)	面上基金	王志刚	高能物理研究所
基于THGEM探测器的数字量能器的研究(2015)	面上基金	俞伯祥	高能物理研究所 IHI
高粒度量能器上的通用粒子流算法开发(2016)	面上基金	阮曼奇	高能物理研究所
正离子反馈连续抑制型气体探测器的实验研究 (2016)	面上基金	祁辉荣	高能物理研究所
CEPC对撞区最终聚焦系统的设计研究(2015)	青年基金	王逗	高能物理研究所
利用耗尽型CPS提高顶点探测器空间分辨精度的研究 (2016)	青年基金	周扬	高能物理研究所
关于CEPC动力学孔径研究(2016)	青年基金	王毅伟	高能物理研究所

国家重点研发计划 项目预申报书

FY 2016

Ministry of Science and Technology
Requested 45M RMB; 36M RMB approved

高能环形正负电子对撞机相关的物理和关键技

项目名称: 术预研究

所属专项: 大科学装置前沿研究

新一代粒子加速器和探测器关键技术和方法的

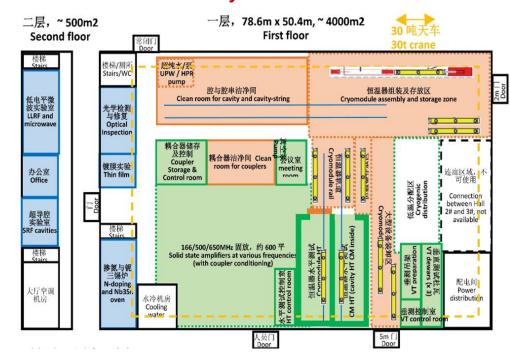
指南方向: 预先研究

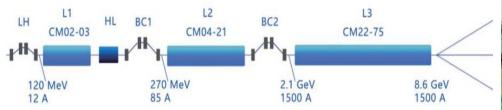
推荐单位: 教育部

申报单位:(公章) 清华大学

项目负责人: 高原宁

Funding to MOST (~40M) in process

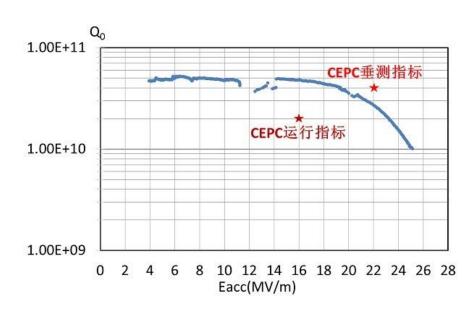

40M RMB CAS talent program
10M-100 RMB CAS fund for HTc
~500M RMB Beijing fund (for light source)
~100M RMB other agencies

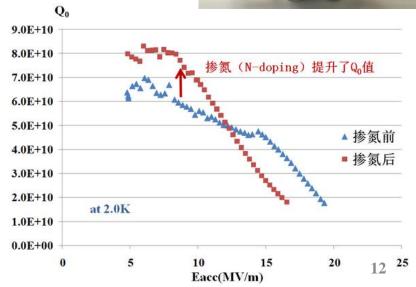

funding needs for carrying out CEPC design and R&D should be mostly met by end of 2018

SRF Cavities

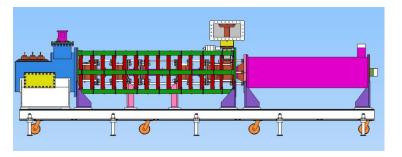
- A new SRF testing facility is under construction, thanks to Beijing municipal government
- Shanghai municipal government decided to support significantly the Shanghai Coherent Light Facility(SCLF).
 - > 432 1.3 GHz cavities
 - > 54 Cryomodules
- ➤ IHEP plans to collaborate with SINAP and provide > 1/3 of cavities and cryomodules, an excellent exercise for us.

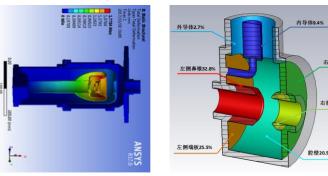
New SRF test facility under construction




Current R&D results

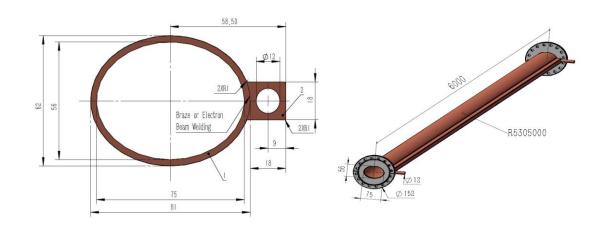
- A CEPC 650MHz 1-cell cavity completed the vertical test.
- A CEPC 650MHz 2-cell cavity completed, to be test soon
- EP facility is under construction(ADS funding and others), ready this summer
- Two CEPC 650MHz 1-cell cavities tried N-doping, Q_0 increase is seen.



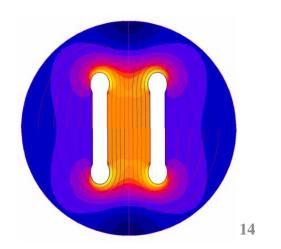


High Efficiency Klystrons

- Goal: CW Power > 800 kW, Efficiency > 80%, Lifetime > 100 k hrs
- A collaboration with the institute of electronics of CAS, and Kunshan Guoli
- Design of the first klystron with an efficiency of 65% has completed. Manufacturing contract signed. Available this year.
- Design of the second higher efficiency (70%) klystron will be finished soon.
 Production next year.
- Based on the test results, the high efficiency klystron (80%) will be built in 2020-2021



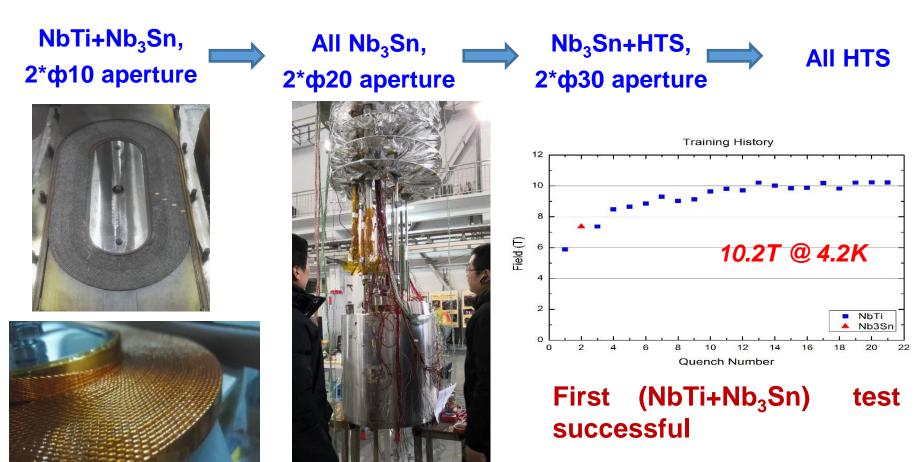
Other prototypes



High precision, low field dipole magnet

6m long vacuum pipes(Al & Cu)

Electrostatic separator


High Field Magnet based on HTC Cable

- Huge impact If HTC cable can be used for 10-20T magnets
 - Huge cost reduction
 - Huge applications in other area and industry
- Fe-based HTC cable
 - Advantages: Metal, easy to process; Isotropic; Cheap in principle
 - Good start at CAS
 - World highest Tc Fe-based materials
 - World first ~ 115 m Fe-based SC cables: 12000 A/cm² @ 10 T
- A collaboration on "HTC SC materials" established
 - IOP, USTC, IOEE, SC cable companies
 - Two approaches:
 - Fe-based HTC cables
 - ReBCO & Bi-2212
- A workshop in Hong Kong this Jan. Next one in KEK

High Field Magnet R&D

- CCT magnet for LHC
- exercise of the Dipole magnet

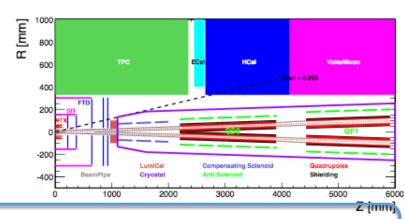
Most active research items

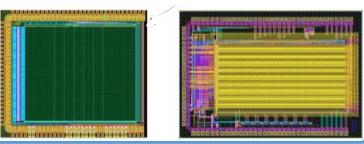
No show-stoppers so far Technical challenges identified → R&D issues

Machine Detector Interface

- Major redesign to accommodate changes in accelerator
- Includes 7 Tesla compensating magnet

Vertex detector


- R&D on low-mass integrated sensors: pixel CMOS and SOI
- Test sensors being studied. Preliminary results in CDR.
- Prototype to be produced in next few years


TPC

 Operation at high-luminosity, Z pole rates studied and preliminarily confirmed

Calorimeters

- Several high-granularity calorimeter technologies explored
- Will produce small prototypes based on SiPM technology

Mini CDR international review in November 2017

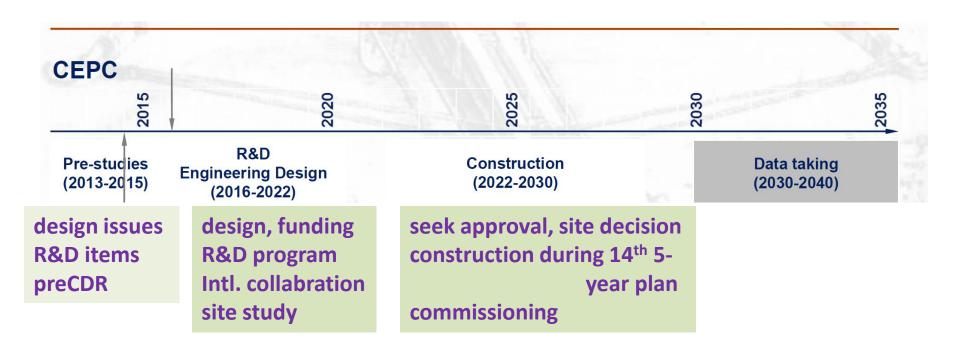
Final version expected around Summer 2018

International Collaboration

- Limited international participation for the CDR
 - Not in any roadmap
 - No funding support
- Hopefully it will be included in the roadmap of Europe, Japan and the US
- The international advisory board worked very well
 - A lot of suggestions
- MOUs have been signed with many institutions
- Welcome recommendation/suggestions

1/3 international participation

CEPC-SppC Industrial Promotion Consortium (CIPC)



- 1) Superconduting materials (for cavity and for magnets)
- 2) Superconductiong cavities
- 3) Cryomodules
- 4) Cryogenics
- 5) Klystrons
- 6) Vacuum technologies
- 7) Electronics
- 8) SRF
- 9) Power sources
- 10) Civil engineering
- 11) Precise machinary.....

Established in Nov. 7, 2017

More than 40 companies joined in first phase of CIPC, and more will join later....

CEPC Schedule (ideal)

Latest Politics

- Science & Technology is strongly supported by this government
 → also a "requirement" to local governments (difference seen at Beijing & Shanghai since 2016)
- Not difficult to find local support for the site
- State Council announced in March "Implementation method to support China-initiated large international science projects and plans"
 - Science of Matter, Evolution of the Universe, life science, earth, energy, ...
 - Goal:
 - up to 2020, 3-5 preparatory projects; 1-2 construction projects
 - up to 2035, 6-10 preparatory projects; ? construction projects
 - Possible competitors: ~ 50 ideas collected, Fusion reactor, space program, brain program, Investigation of the Qinghai Tibet Plateau, CEPC, ...
- We are working with the MOST to be included in the roadmap planning, project selection, etc.