Higgs self-coupling @I00 TeV

Giacomo Ortona (LLR)
Michele Selvaggi (CERN)
also based on:
[1606.09408], [1802.01607]

Why measure HH?

- Measurement of HH gives access to the magnitude of the Higgs self-interaction:

$$
V=\lambda v^{2} H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}
$$

- Higgs trilinear coupling constant $\boldsymbol{\lambda}$ only depends on the Higgs field VEV and Higgs mass. Purely determined by EWSB (in the SM).
- Shape of the Higgs potential is determined by the self coupling value (EWPT)

$$
V(\phi)=\mu^{2}\left(\phi^{\dagger} \phi\right)+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

HH@ FCC-hh: production

$$
\sigma(100 \mathrm{TeV}) / \sigma(14 \mathrm{TeV}) \approx 40
$$

gluon fusion:

- negative interference between box and triangle
- high $m_{h h}$ region suppressed by off-shell propagator in triangle (and dominated by box)

\rightarrow sensitivity to the self-coupling is determined by low $m_{h h}$ region

HH@ FCC-hh: production and decay

$\delta_{\kappa_{\lambda} / k_{\lambda}}$ Higgs decay branching fraction

- Higher order in QCD helps λ-dependent K-factor sensitivity (not only the rate) \rightarrow included here (bby४, bbZZ)!
- Total rate still taken to be given by NNLL+NNLO in EFT (although known to be overshooting by 20\%), but missing the following (should compensate?):
- higher orders other channel ($\mathrm{N} \mathrm{nLO}, \mathrm{n}>2$)
- VBF-HH/ttHH

bbyy

Selection

Backgrounds

- ttH
- jj8
- jjjð (fake photons, fake b’s)

$$
p_{j \rightarrow \gamma}=\alpha \exp \left(-p_{T, j} / \beta\right)
$$

Acceptance cuts
γ isolation $R=0.4$
$\left(p_{T}(\right.$ had $\left.) / p_{T}(\gamma)<0.15\right)$

jets: anti- k_{T}, parameter $R=0.4$

$$
\begin{gathered}
\left|\eta_{b, \gamma, j}\right|<6 \\
p_{T}(b), p_{T}(\gamma), p_{T}(j)>35 \mathrm{GeV} \\
m_{b b} \in[60,200] \mathrm{GeV} \\
m_{\gamma \gamma} \in[100,150] \mathrm{GeV}
\end{gathered}
$$

$$
\begin{gathered}
\left|\eta_{b, \gamma}\right|<4.5 \\
p_{T}\left(b_{1}\right), p_{T}\left(\gamma_{1}\right)>60 \mathrm{GeV} \\
p_{T}\left(b_{2}\right), p_{T}\left(\gamma_{2}\right)>35 \mathrm{GeV} \\
m_{b b} \in[100,150] \mathrm{GeV}
\end{gathered}
$$

$$
\begin{aligned}
& p_{T}(b b), p_{T}(\gamma \gamma)>100 \mathrm{GeV} \\
& \quad \Delta R(b b), \Delta R(\gamma \gamma)<2.5,3.0
\end{aligned}
$$

no isolated leptons with $p_{T}>25 \mathrm{GeV}$

2 D shapes

ttH

QCD

$m_{\gamma \gamma}[\mathrm{GeV}]$

- exploit correlations of means in the signal, ex: $m_{\gamma y}$ vs $m_{h h}$
- build parametric model in 2D $\rightarrow \mathrm{m}_{\gamma \gamma}$: gauss, m_{hh} : landau+exp
- perform 2D Likelihood fit on the signal strength and coupling modifier:

$$
\mu=\sigma_{\text {obs }} / \sigma_{\mathrm{SM}}
$$

$$
K_{\lambda}=\lambda_{\text {obs }} / \lambda_{S M}
$$

Precision on the self-coupling

assuming QCD can be measured from sidebands

nominal background yields:

$$
\begin{gathered}
\delta \kappa_{\lambda}(\text { stat }) \approx 3.5 \% \\
\delta \kappa \lambda(\text { stat }+ \text { syst }) \approx 4.5 \% \\
\delta r(\text { stat }) \approx 2.5 \% \\
\delta r(\text { stat }+ \text { syst }) \approx 3 \% \\
\hline
\end{gathered}
$$

varying (0.5x-2x) background yields:

$$
\begin{gathered}
\delta \kappa \lambda(\text { stat }) \approx 3-5 \% \\
\delta r(\text { stat }) \approx 2-3 \%
\end{gathered}
$$

Varying detector specifications

$m(\gamma \gamma)$ resolution

Photon efficiency

Photon fake-rate

- Model tunable to include various effects/conditions on the objects
- Even with non-ideal configurations, 5% precision on $k \lambda$ seems to be within reach

4b-boosted

Approach

- $\sigma(\mathrm{pp} \rightarrow \mathrm{hhj}, \mathrm{I} 00 \mathrm{TeV}) \approx 100 * \sigma(\mathrm{pp} \rightarrow \mathrm{hhj}, \mathrm{I} 4 \mathrm{TeV})$, with $\mathrm{pt}(\mathrm{j})>100 \mathrm{GeV}$
- Exploit large branching ratio $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{bb})^{2} \approx 0.3$
- Requiring a boosted HH system recoiling against jet(s), contains the invariant mass to small values \rightarrow maintain sensitivity to the self-coupling
- In practice low mass region $\left(\mathrm{m}_{\mathrm{H}} \approx 200 \mathrm{GeV}\right)$ is unresolvable:

$$
\mathrm{m}_{\mathrm{HH}} \approx \mathrm{PT} * 2 \mathrm{R}_{\mathrm{jet}} \text { and } \mathrm{R}_{\mathrm{jet}} \approx 2 \mathrm{~m}_{\mathrm{H}} / \mathrm{PT} \Rightarrow \mathrm{~m}_{\mathrm{HH}} \approx 3-4 \mathrm{~m}_{\mathrm{H}}
$$

Signal and backgrounds

Backgrounds

- QCD: (double gluon to b-bar splitting recoiling against jet)
- $\quad P \mathrm{P} \rightarrow 4 \mathrm{~b}+\mathrm{j}$ (or simply P P $\rightarrow \mathrm{j} g \mathrm{~g}$)

$$
\sigma^{4 b+j}(\mathrm{pT}(\mathrm{j})>500 \mathrm{GeV}) \sim 57 \mathrm{pb}\left(10^{9} @ 30 \mathrm{ab}^{-1}\right)
$$

- ttbar, ZH ...

Signal

- $P P \rightarrow h h+j$
$\sigma^{\text {hh+j }}(\mathrm{pT}(\mathrm{j})>500 \mathrm{GeV}) \sim 4 \mathrm{fb}\left(10^{5} @ 30 \mathrm{ab}^{-\mathrm{I}}\right)$

If aim for \% level precision, need $\mathrm{S}, \mathrm{B} \gtrsim 10^{4}$ after cuts:
, i.e. a factor of 10^{5} in background rejection \rightarrow very hard !!
\rightarrow explore lower $\mathrm{PT}(\mathrm{hh})$ range as well

Selection strategy

- Boost the di-Higgs system:

$$
\text { - } \quad \mathrm{PT}\left(\mathrm{~h}_{1} \mathrm{~h}_{2}\right)>250 \mathrm{GeV}
$$

- Preselection: Require $\gtrsim 2$ b-tagged fatjets $R=0.8$
- $\mathrm{PT}\left(\mathrm{h}_{1}\right)>400 \mathrm{GeV}$ and $\left|\eta_{1}\right|<3.0$
- $\operatorname{PT}\left(\mathrm{h}_{2}\right)>300 \mathrm{GeV}$ and $\left|\eta_{2}\right|<3.0$
- Higgs tagging:
- $100<\operatorname{msD}\left(h_{I}\right)<135$ and $\tau_{2,1}{ }^{[1]}\left(h_{1}\right)<0.4$
- $100<\operatorname{msD}\left(\mathrm{h}_{2}\right)<\mathrm{I} 35$ and $\tau_{2,1}\left(\mathrm{~h}_{2}\right)<0.4$

FCC-hh Simulation (Delphes)

Expected sensitivity

varying ($0.5 x-2 x$) background yields:

bb $\tau \tau$-boosted

[1802.01607]

Approach

Backgrounds:

- tt+jets
- Z bb + jets (EWK + QCD)
- ZZ/ZH (EWK)
- W+jets (neglected)
- $\sigma(\mathrm{pp} \rightarrow \mathrm{hhj}, \mathrm{I} 00 \mathrm{TeV}) \approx 100 * \sigma(\mathrm{pp} \rightarrow \mathrm{hhj}, \mathrm{I} 4 \mathrm{TeV})$, with $\mathrm{PT}(\mathrm{j})>100 \mathrm{GeV}$
- Exploit large branching ratio $2 * \mathrm{BR}(\mathrm{H} \rightarrow \mathrm{bb}) * \mathrm{BR}(\mathrm{H} \rightarrow \boldsymbol{\tau} \tau) \approx 7 \%$
- Requiring a boosted HH system recoiling against jet(s), contains the invariant mass to small values \rightarrow maintain sensitivity to the self-coupling
- Final states: both $\boldsymbol{\tau}_{\text {lep }} \tau_{\text {had }}$ and $\tau_{\text {lep }} \tau_{\text {lep }}$ considered, but $\tau_{\text {lep }} \tau_{\text {had }}$ by far the best...
- Resolved analysis and $\tau_{\text {had }} \tau_{\text {had }}$ final state were not considered, but they are by far the most sensitive ones at LHC-Phasell and in HL-LHC simulations

Caveat: no detector simulation!

Analysis strategy

- I Higgs tagged jet, with double-b tag , PT > 150 GeV
- $\tau_{\text {had }}$ tagged
- lepton pT > 20 GeV
- BDT based analysis

	signal	QCD+EW	EW	$t \bar{t} j$	tot. background	S / B	$S / \sqrt{B}, 30 / \mathrm{ab}$
$\kappa_{\lambda}=0.5$	0.169					0.176	29.81
$\kappa_{\lambda}=1$	0.141	0.52	0.07	0.37	0.96	0.147	24.97
$\kappa_{\lambda}=2$	0.105					0.109	18.49

$$
\begin{array}{ll}
0.76<\kappa_{\lambda}<1.28 & 3 / \mathrm{ab} \\
0.92<\kappa_{\lambda}<1.08 & 30 / \mathrm{ab}
\end{array}
$$

$$
\rightarrow \quad \delta \kappa_{\lambda}(\text { stat }) \approx 8 \%
$$

bb4|

Analysis strategy

Cut Flow

- $\mathrm{H} \rightarrow 4$ leptons +2 's (for now only muons)

Backgrounds:

- ttH, H $\rightarrow 4$ leptons
- $4 I+$ jets $\left(Z Z^{*}, Z^{*} Z^{*}, Z Z\right)$ continuum (neglected for now)
- $\mathrm{PP} \rightarrow \mathrm{Hbb} \rightarrow 4 \mathrm{l}$ b

Method:

- reconstruct Higgs peak
- $120<M_{4 \mu}<130 ; 80<M_{b b}<130$

- additional handle for $\mathrm{ttH} \rightarrow \Delta \mathrm{R}(\mathrm{b}, \mathrm{b})$

Precision on the signal strength


```
\deltar(stat) \approx 10-15%
```


$\delta_{\kappa_{\lambda}(\text { stat })} \approx 20-30 \%$

bbWW \rightarrow bblvqq

- $80<\mathrm{mbb}<150 \mathrm{GeV}$
B. Di Micco
M.Verducci
- рт $(W W)>150 \mathrm{GeV}$

Backgrounds:

- bbWW
- V+jets

$$
\delta r(\text { stat }) \approx 20 \%
$$

$$
\rightarrow
$$

$$
\delta_{\kappa_{\lambda}(\text { stat })} \approx 40 \%
$$

Conclusions \& outlook

- $\mathbf{H H} \rightarrow \mathbf{b b \gamma \gamma}$ analysis has been performed with more recent detector description and new MC samples
- small differences have been observed but overall comparable performance on sensitivity $\delta_{\kappa_{\lambda}}($ stat $) \approx 3.5$ \%
- HH recoil displays lower performance due to huge QCD background
- bbbbj: sensitivity $\delta_{K_{\lambda}}($ stat $) \approx \mathbf{2 0 - 3 0 \%}$
- bb $\tau \tau j$: sensitivity found $\delta \kappa_{\lambda}($ stat $) \approx \mathbf{1 0 \%}$ (using only $\tau_{\text {lep }} \tau_{\text {had }}$)
- HH \rightarrow 4lbb (preliminary)
- looks very promising with $\delta_{\kappa_{\lambda}}($ stat $) \approx 20-30 \%$
- $\mathbf{H H} \rightarrow$ bbWW \rightarrow lvbbjj
- $\delta_{K_{\lambda}}($ stat $) \approx 40 \%$

BACKUP

Baseline

- Detailed analysis performed in 2016 (summarised in the Yellow Report [I606.09408])
- cut-based analysis
- reported sensitivity on $\boldsymbol{\lambda}$ after $30 \mathrm{ab}^{-1}$ at 100 TeV
- studied impact of detector performance, systematics, background normalisation

	$\Delta_{S}=0.00$	$\Delta_{S}=0.01$	$\Delta_{S}=0.015$	$\Delta_{S}=0.02$	$\Delta_{S}=0.025$
$r_{B}=0.5$	2.7%	3.4%	4.1%	4.9%	5.8%
$r_{B}=1.0$	3.4%	3.9%	4.6%	5.3%	6.1%
$r_{B}=1.5$	3.9%	4.4%	5.0%	5.7%	6.4%
$r_{B}=2.0$	4.4%	4.8%	5.4%	6.0%	6.8%
$r_{B}=3.0$	5.2%	5.6%	6.0%	6.6%	7.3%

UPDATES:

- up-to-date parton shower/underlying event modelling (Pythia8 vs Pythia6)
- more recent FCC-hh detector description (4T vs 6T, smaller detector size)
- QCD background generation using 5 f scheme (jjjخ, jjY γ)
- Up-to-date k-factors for backgrounds (ttH) and signal ($\boldsymbol{\lambda}$-dependent)

Precision on the signal strength

assuming QCD can be measured from sidebands

nominal background yields:

$$
\begin{gathered}
\delta r(\text { stat }) \approx 2.5 \% \\
\delta r(\text { stat }+ \text { syst }) \approx 3 \%
\end{gathered}
$$

varying ($0.5 x-2 x$) background yields:

$$
\delta r(\text { stat }) \approx 2-3 \%
$$

The relevant lagrangian terms of $\mathrm{gg} \rightarrow \mathrm{HH}$ production in $\mathrm{D}=6 \mathrm{EFT}$

$$
\begin{aligned}
& \mathcal{L}_{h h}=-\frac{m_{h}^{2}}{2 v}\left(1-\frac{3}{2} c_{H}+c_{6}\right) h^{3}+\frac{\alpha_{s} c_{g}}{4 \pi}\left(\frac{h}{v}+\frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& -\left[\frac{m_{t}}{v}\left(1-\frac{c_{H}}{2}+c_{t}\right) \bar{t}_{L} t_{R} h+\text { h.c. }\right]-\left[\frac{m_{t}}{v^{2}}\left(\frac{3 c_{t}}{2}-\frac{c_{H}}{2}\right) \bar{t}_{L} t_{R} h^{2}+\text { h.c. }\right]
\end{aligned}
$$

SM diagrams

ttHH non-linear interaction

Higgs-gluon contact interactions

$$
\sigma^{S M_{h h}}(13 \mathrm{TeV})=33.45 \mathrm{fb}^{\left.+4.3 \%_{-6.0 \%}(\text { scale unc. }) \pm 3.1 \%\left(\mathrm{PDF}+\alpha_{\mathrm{S}} \text { unc) }{ }^{[1]}\right] .\right] .}
$$

The non-resonant double Higgs production allows to directly probe the Higgs trilinear coupling ($\lambda_{\text {hhh }}$). Even if in Run2 we do not have full sensitivity to "measure" SM $\lambda_{\text {hhh }}$
\rightarrow The BSM physics can be modelled in EFT adding dim-6 operators ${ }^{[2]}$ to the SM
Lagrangian, and the physics can be described with 5 parameters: $\lambda_{\text {hhh }}, \mathrm{y}_{\mathrm{t}}, \mathrm{c}_{2}, \mathrm{c}_{2 g}, \mathrm{c}_{\mathrm{g}}$

- Non SM top Yukawa and $\lambda_{\text {hhh }}$ couplings
- New diagrams and couplings in the game

To be noted :
in a linear EFT $\quad c_{g}=c_{2 g}$ and $c_{2}=-\left(3 m_{t} / 2 v\right) y_{t}$

