Top squark searches at 100 TeV

Loukas Gouskos, Allan Sung, Joe Incandela
Physics motivation

- **SUSY**: One of the most extensively studied BSM theories
 - An excellent answer to hierarchy problem, dark matter and unification of couplings
- “Natural SUSY” models: attract a lot of attention at the LHC
 - Particularly relevant to address the hierarchy problem / understanding of naturalness of the EWK scale

Recent articles relax these conditions: $M_{\text{stop}} < \sim 3 \text{ TeV}$
- Baer et. al. 1602.0769, 1611.08511
- Ross et. al. 1110.6926

- **Natural SUSY spectrum**: higgsinos, stops/sbottoms and gluinos, $\sim \text{ TeV}$ Scale [maybe within LHC reach]
- All other sparticles can be very heavy [decoupled]

This talk: Focus on the search for top squarks in models with R-parity conservation
Setting the stage

- **Simplified model spectra [SMS]:** used for design & result interpretation
 - Minimal set of free parameters to describe a particular set of decay chains
 - More generic description -> results applicable to other scenarios

- But.. there are some simplifications:
 - eg. full SUSY spectrum not provided; particle properties, (usually) BR=100% for the sparticle decays

![CMS Supplementary 35.9 fb⁻¹ (13 TeV)]

- Region kinematically forbidden
 \(m[\text{prod. sparticle}] < m[\text{LSP}] \)

- Excluded parameter space

- Set Upper Limits in cross-section

- Observed & Expected mass limits based on the nominal production cross-section

Loukas Gouskos
FCC Week 2018 @ Amsterdam
No hints of SUSY after the first years of LHC operation

Models with m_{stop} up to ~ 1 TeV and light LSP are excluded
Results should be interpreted as indicative of the expected performance

[e.g. no detector aging vs time considered]

- End of HL-LHC Physics program: Exclude top squarks ~ 2 TeV
End of HL-LHC program: What’s next?

- **Optimistic scenario [or scenario 1]:**
 - Discovery/Observation top squarks at the LHC [~TeV scale]:
 - mechanism for the “hierarchy problem” [and for dark matter if R_p is conserved]
 - Need a SUSY-factory to study the properties [mass spectrum, BR, etc.]
 - 100 TeV pp collider is a **SUSY-factory** [e.g. $m_{\text{stop}} = 2$ TeV $\rightarrow \sigma_{100\text{TeV}}/\sigma_{13\text{TeV}} \sim 10^4$]

- **Pessimistic scenario [or scenario 2]:**
 - No hints from SUSY after HL-LHC
 - Natural-SUSY in trouble [though not dead]
 - Other SUSY models alive [i.e. split-SUSY] / SUSY mass spectrum very high [?]
 - Need a powerful hadronic collider to really explore the naturalness issue and the viability of SUSY in general
 - SUSY is to this day on the most appealing BSM theories
Motivation for FCC-hh @100 TeV

- Theory motivations for superpartner mass upper bounds and the reach of a 100 TeV pp collider:
 - Measured Higgs mass [FCC-hh Yellow report]:
 - Top squarks have the largest contributions to the Higgs mass
 - $1 \text{ TeV} < m_{\text{stop}} < 10 \text{ TeV}$ seem to be favored in many models
 - Gauge coupling unification [FCC-hh Yellow report]:
 - Predict superpartners with $m_{\text{stop}} < 10 \text{ TeV}$
 - Understanding the naturalness of the EWK state:
 - “Never seen fine-tuning of 10^{-4} in HEP”: $\text{FT } 10^{-4} \Rightarrow \sim 10 \text{ TeV}$ top squarks

Mostly outside the HL-LHC reach; Need for a powerful hadron collider
Theory motivations for superpartner mass upper bounds and the reach of a 100 TeV pp collider:

- Measured Higgs mass [FCC-hh Yellow report]:
 - Top squarks have the largest contributions to the Higgs mass
 - $1 \text{ TeV} < m_{\text{stop}} < 10 \text{ TeV}$ seem to be favored

GOAL: Probe up to the $\sim10 \text{ TeV}$ regime in m_{stop} with FCC-hh @ 100 TeV

- Never seen fine-tuning of 10^{-4} in HEP? FT 10^{-4} -> $\sim10 \text{ TeV}$ top squarks
- Gauge coupling unification [FCC-hh Yellow report]:
 - Predict superpartners with $m_{\text{stop}} < 10 \text{ TeV}$

Mostly outside the HL-LHC reach; Need for an FCC-hh @ 100 TeV
Search design
Signal characteristics

- Design a search for top squarks in the all hadronic channel
 - Largest branching fraction (~45%)
 - Very distinct signature

- Baseline selection:
 - Veto leptons with $p_T > 30$ GeV
 - $N_j = 2$ with $p_T > 1000$ GeV; $N_b = 1$ with $p_T > 50$ GeV
 - $M_{E_T} > 2$ TeV
 - $\Delta \phi (j_{1,2} ; M_{E_T}) > 0.5$; $\Delta \phi (j_3 ; M_{E_T}) > 0.3$ [QCD killers]

- Multiple jets
- 2 b-jets
- On-shell top quarks
- Large M_{E_T} [from the two LSPs]
Background processes

- Relevant backgrounds:
 - "Lost Lepton" (LL) backgrounds:
 - Stemming from leptonic decays of W with the lepton escaping detection -> large MET
 - ttbar dominates, important contributions from ttW/ttH
 - ttZ(Z->vv) background:
 - Similar characteristics with signal
 - $\sigma(100\ TeV)/\sigma(14\ TeV) \sim 50$
 - "Rare" backgrounds:
 - ttVV, tttt, ...
 - Largely irreducible background [but small σ]
 - Very small contribution from V+jets

- Technical details:
 - BKG and signal generated using MadGraph
 - NLO k-factors applied
 - Events simulated using FCC detector & Delphes

$\sigma(m_{\text{stop}} \sim 7\ TeV) \sim 10^{-4}$ [NLO]
Top tagging in top squark searches

- **Key player for top squark searches:** *Identification of hadronic top quarks*
 - Provides a powerful handle to suppress many of the SM backgrounds
 - NB: 2 hadronic top quarks in signal
- **Top quarks are typically boosted in signal**
 - Top decay products merged into a single jet \([\Delta R \sim 2m_{\text{top}}/p_T(\text{top})]\)
 - Boost of the top depends on characteristics of the signal model
 - Need top tagging over a wide range of \(p_T\) [challenging]

Signals with moderate \(\Delta m\)
- Top quarks with moderate \(p_T\)
- \(\sim\) TeV [similar to LHC]

Signals with large \(\Delta m\)
- Top quarks with very high \(p_T\)
- \(\sim 5\)-10 TeV

Top squark searches at 100 TeV

FCC Week 2018 @ Amsterdam
Hadronic top tagging

- **In theory:** A top quark decays to a W boson and a b quark
 - $\rightarrow 3$ quarks in total
 - **Substructure:** identify the 3-prong structure
 - **Flavor:** Identify the b quark [or even $W\rightarrow cX$]

- **In practice:** Jet is a cone of reconstructed particles in the detector
 - With a mass and kinematics consistent with the top decay

Top decay in real life

BKG [gluon/quark]

Challenging..
Choice of the jet distance parameter (R)

- Large enough to contain the top decay products
- But not too large...
 - Contributions from the underlying event, pile-up, ISR lead to increased jet mass.

There is not a single choice: Optimal R depends on p_T[top]
Top tagging at 100 TeV: Challenge 2

- Spatial separation of the decay products of ultra-boosted top quarks
 - ΔR (ECAL) ~ 0.02, ΔR (HCAL) ~ 0.1
 4x better wrt CMS/ATLAS
 - CALO granularity not sufficient for efficient identification of ultra-boosted tops
- Inspired from 1503.03347:
 - Exploit tracking for jet substructure

Putting pieces together
- top candidate: anti-kT PF-Jets with $R=0.8$
- iteratively reduce R and exploit jet substructure
- Repeat using jets made solely from tracks
- Utilize Multivariate methods [i.e. BDT] to suppress fake rate

“Multi-R + Tracks” top tagging algorithm
Multi-R + tracks tagger: performance

Work in progress: Study performance with improved calorimeters [e.g. HGC]

- modest improvement wrt cut-based tagger
- “Multi-R+Tracks”: Similar performance to Multi-R version [as expected in this p_T regime]

- significant gain wrt to the cut based tagger
- Addition of track-based variables recovers loss of performance in the high-p_T regime
Highlights from the search design

- “Multi-R + Tracks” provides a powerful handle to suppress many backgrounds:

FCC Simulation
$\sqrt{s} = 100$ TeV, 30 ab^{-1}

SIG scaled to BKG

Working point:
$\sim 5\%$ mistagging rate

Powerful observable:
[up to 90% BKG for <10% SIG]
Highlights from the search design (2)

- On top of the baseline, categorize events based on N_t and N_b

- M_{E_T} traditionally powerful variable to separate signal from background

- M_{E_T} spectrum depends strongly on the signal model:
 - Fit M_{E_T} shape

![Graph showing M_{E_T} spectrum with $N_t \geq 2, N_b \geq 2$]
Challenge: Background estimation

- We will enter in the regime of very small SUSY production \times-sections [very massive sparticles]
 - σ(SUSY) orders of magnitude smaller wrt σ(SM)

- SUSY signal is mainly searched for in the tails of the distributions
 - BKG: very good control of the tails needed

- Strategy:
 - Main backgrounds [LL & ttZ] estimated using data-driven methods:
 - Use dedicated “data” control samples [with kinematics similar to the signal] to measure each process
 - Translate the measurement to a BKG prediction with the aid of simulation
 - Rare backgrounds:
 - Estimated from simulation with generous uncertainties [100%]
FCC Simulation

- **LL BKG: 1L control sample**
 - \(N_L = 1\) with \(p_T(L) \geq 30\) GeV
 - \(M_T(L, ME_T) < 100\) GeV:
 - suppress potential signal contamination

- **ttZ BKG: 3L control sample**
 - \(N_L = 3\) with \(p_T(L) \geq 30\) GeV
 - OSSF pair consistent with \(M_Z\)
 - \(p_T(Z) > 2\) TeV:

Systematics

- Dominant uncertainty from the stats of the control regions
 [propagated to the final results]
- Two scenarios to account for additional sources:
 - "nominal": 20% (*)
 - "conservative": 40% (*)
 - Uncorrelated across all regions/processes
Results
Results @ 3 ab$^{-1}$

Expected limit @95% CL

- Discovery potential (5σ)
 - FCC Simulation
 - $\sqrt{s} = 100$ TeV, 3 ab$^{-1}$
 - Nominal
 - Conservative

- Expected limit @95% CL
 - ~2 TeV
 - HL-LHC

- Discovery potential (5σ)
 - ~1.4 TeV
 - HL-LHC
Results @ 30 ab\(^{-1}\)

Expected limit @95% CL

- FCC Simulation\(\sqrt{s} = 100\) TeV, 30 ab\(^{-1}\)
 - Nominal
 - Conservative

- ~2 TeV
 - HL-LHC
- ~8.5 TeV
 - FCC-hh (3ab\(^{-1}\))

Discovery potential (5\(\sigma\))

- FCC Simulation\(\sqrt{s} = 100\) TeV, 30 ab\(^{-1}\)
 - Nominal
 - Conservative

- ~1.4 TeV
 - HL-LHC
- ~4.5 TeV
 - FCC-hh (3ab\(^{-1}\))

Loukas Gouskos

Top squark searches at 100 TeV
FCC Week 2018 @ Amsterdam
Summary

- We have designed a search for top squarks for the FCC-hh at 100 TeV
 - Focus on all hadronic channel -> take advantage of the largest BR
- Tagging ultra-boosted top quarks @ 100 TeV needs detector granularity and improved methods:
 - Multi-R approach
 - Track-based substructure variables

"Multi-R+Tracks"

5-10x improved background rejection wrt to existing approaches

[Still lots of room for improvement]

Conclusion:

- We can reach the $m_{\text{stop}} \sim 8.5$ TeV barrier already with 3 ab$^{-1}$
- Additional luminosity [i.e. 30 ab$^{-1}$] is important for SUSY hunt:
 - discover top squarks with $m_{\text{stop}} \sim 9.5$ TeV & exclusion up to ~ 11 TeV

The FCC-hh physics program will be critical in our discovery or abandonment of SUSY
Back-ups