

Top squark searches at 100 TeV

Loukas Gouskos, Allan Sung, Joe Incandela

Physics motivation

- SUSY: One of the most extensively studied BSM theories
 - An excellent answer to hierarchy problem, dark matter and unification of couplings
- "Natural SUSY" models: attract a lot of attention at the LHC
 - Particularly relevant to address the hierarchy problem / understanding of naturalness of the EWK scale

Natural SUSY spectrum: higgsinos, stops/sbottoms and gluinos, ~ TeV Scale [maybe within LHC reach]

All other sparticles can be very heavy [decoupled]

This talk: Focus on the search for top squarks in models with R-parity conservation

Setting the stage

- Simplified model spectra [SMS]: used for design & result interpretation
 - Minimal set of free parameters to describe a particular set of decay chains
 - More generic description -> results applicable to other scenarios
- But.. there are some simplifications:
 - eg. full SUSY spectrum not provided; particle properties, (usually) BR=100% for the sparticle decays

Top squark searches at the LHC

- No hints of SUSY after the first years of LHC operation
- Models with m_{stop} up to ~1 TeV and light LSP are excluded

Top squark searches at 100 TeV FCC Week 2018 @ Amsterdam

Projections at LHC and HL-LHC

End of HL-LHC Physics program: Exclude top squarks ~ 2 TeV

Top squark searches at 100 TeV FCC Week 2018 @ Amsterdam

- Optimistic scenario [or scenario 1]:
 - Discovery/Observation top squarks at the LHC [~TeV scale]:
 - mechanism for the "hierarchy problem" [and for dark matter if R_P is conserved]
 - Need a SUSY-factory to study the properties [mass spectrum, BR, etc..]
 - 100 TeV pp collider is a **SUSY-factory** [e.g. $m_{stop} = 2 \text{ TeV} \rightarrow \sigma_{100\text{TeV}} / \sigma_{13\text{TeV}} \sim 10^4$]
- Pessimistic scenario [or scenario 2]:
 - No hints from SUSY after HL-LHC
 - Natural-SUSY in trouble [though not dead]
 - Other SUSY models alive [i.e. split-SUSY] / SUSY mass spectrum very high [?]
 - Need a powerful hadronic collider to really explore the naturalness issue and the viability of SUSY in general
 - SUSY is to this day on the most appealing BSM theories

- Theory motivations for superpartner <u>mass upper bounds</u> and the reach of a 100 TeV pp collider: $45 \text{ from } \beta > 4$ $- M_{\text{SUEY}} = 1 \text{ TeV}$ FeynHiggs 2.100
 - Measured Higgs mass [FCC-hh Yellow report]:
 - Top squarks have the largest contributions to the Higgs mass
 - 1 TeV < m_{stop} < 10 TeV seem to be favored in many models
 - Gauge coupling unification [FCC-hh Yellow report]:
 - Predict superpartners with m_{stop} < 10 TeV
 - Understanding the naturalness of the EWK state:
 - "Never seen fine-tuning of 10⁻⁴ in HEP": FT 10⁻⁴ -> ~10 TeV top squarks

Mostly outside the HL-LHC reach; Need for a powerful hadron collider

Nima Arkani-Hamed: FCC-Kick-off 2014

- Measured Higgs mass [FCC-hh Yellow report]:
 - Top squarks have the largest contributions to the Higgs mass
 - 1 TeV < m_{stop} < 10 TeV seem to be favored

GOAL: Probe up to the ~10 TeV regime in m_{stop} with FCC-hh @ 100 TeV

- Never seen fine-tuning of 10 * in HEP FT 10⁻⁴ -> ~10 TeV top squarks
- Gauge coupling unification [FCC-hh Yellow report]:
 - Predict superpartners with m_{stop} < 10 TeV

Mostly outside the HL-LHC reach; Need for an FCC-hh @ 100 TeV * Higgs + nothing else @ 100TeV * Higgs + nothing else @ 100TeV ~ 10 tuning! * <u>Mever seen this level of tuning</u> in Porticle physiss. * Qualitatively new mortal blow to naturalness

Loukas Gouskos

Top squark searches at 100 TeV FCC Week 2018 @ Amsterdam

Search design

Signal characteristics

- Design a search for top squarks in the all hadronic channel
 - Largest branching fraction (~45%)
 - Very distinct signature

- Multiple jets
- 2 b-jets
- On-shell top quarks
- Large ME_T [from the two LSPs]

- Baseline selection:
 - Veto leptons with p_T>30 GeV
 - $N_j >= 2$ with $p_T > 1000$ GeV; $N_b >= 1$ with $p_T > 50$ GeV
 - $ME_T > 2 \text{ TeV}$
 - Δφ (j_{1,2}; ME_T) > 0.5; Δφ (j₃; ME_T) > 0.3 [QCD killers]

Background processes

 $\begin{bmatrix} u \\ s \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} \begin{bmatrix} b \end{bmatrix}$

- Relevant backgrounds:
 - "Lost Lepton" (LL) backgrounds:
 - Stemming from leptonic decays of W with the lepton escaping detection -> large MET
 - ttbar dominates, important contributions from ttW/ttH
 - ttZ(Z->vv) background:
 - Similar characteristics with signal
 - σ(100 TeV)/σ(14 TeV) ~50
 - "Rare" backgrounds:
 - ttVV, tttt, ...
 - Largely irreducible background [but small σ]
 - Very small contribution from V+jets
- Technical details:
 - BKG and signal generated using MadGraph
 - NLO k-factors applied

 Events simulated using FCC detector & Delphe Top squark searches at 100 TeV
EVENTS FCC Week 2018 @ Amsterdam

Boost of the top depends on characteristics of the signal model

Need top tagging over a wide range of p_T [challenging]

Hadronic top tagging

- In theory: A top quark decays to a W boson and a b quark
 - -> 3 quarks in total
 - Substructure: identify the 3-prong structure
 - Flavor: Identify the b quark [or even W->cX]

Substructure

- In practice: Jet is a cone of reconstructed particles in the detector
 - With a mass and kinematics consistent with the top decay

Top tagging at 100 TeV: Challenge 1

 $\begin{bmatrix} u \\ s \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} \begin{bmatrix} b \end{bmatrix}$

- Choice of the jet distance parameter (R)
 - Large enough to contain the top decay products
 - But not too large...
 - Contributions from the underlying event, pile-up, ISR lead to increased jet mass.

There is not a single choice: Optimal R depends on p_T[top]

Top squark searches at 100 TeV meeting

FCC Week 2018 @ Amsterdam

Top tagging at 100 TeV: Challenge 2

- Spatial separation of the decay products of ultra-boosted top quarks
 - ΔR (ECAL) ~ 0.02 , ΔR (HCAL) ~ 0.1
 4x better wrt CMS/ATLAS
 - CALO granularity not sufficient for efficient identification of ultra-boosted tops
- Inspired from 1503.03347:
 - Exploit tracking for jet substructure

Putting pieces together

- -> top candidate: anti-kT PF-Jets with R=0.8
- -> iteratively reduce R and exploit jet substructure
- -> Repeat using jets made solely from tracks
- -> Utilize Multivariate methods [i.e. BDT] to suppress fake rate

"Multi-R + Tracks" top tagging algorithm

Top squark searches at 100 TeV meeting FCC Week 2018 @ Amsterdam

Multi-R + tracks tagger: performance

Multi-R version [as expected in this p_T regime]

of performance in the high-pT regime

Work in progress: Study performance with improved calorimeters [e.g. HGC]

Top squark searches at 100 TeV meeting

FCC Week 2018 @ Amsterdam

Highlights from the search design

 "Multi-R + Tracks" provides a powerful handle to suppress many backgrounds:

Top squark searches at 100 TeV

FCC Week 2018 @ Amsterdam

Highlights from the search design (2)

- $\begin{bmatrix} u \\ s \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} \begin{bmatrix} b \end{bmatrix}$
- On top of the baseline, categorize events based on N_t and N_b
- ME_T traditionally powerful variable to separate signal from background

- ME_T spectrum depends strongly on the signal model:
 - Fit ME_T shape

Challenge: Background estimation

- We will enter in the regime of very small SUSY production x-sections [very massive sparticles]
 - σ(SUSY) orders of magnitude smaller wrt σ(SM)
- SUSY signal is mainly searched for in the tails of the distributions
 - BKG: very good control of the tails needed
- Strategy:
 - Main backgrounds [LL & ttZ] estimated using data-driven methods:
 - Use dedicated "data" control samples [with kinematics similar to the signal] to measure each process
 - Translate the measurement to a BKG prediction with the aid of simulation
 - Rare backgrounds:
 - Estimated from simulation with generous uncertainties [100%]

Challenge: Background estimation (2)

Results

Results @ 3 ab⁻¹

Results @ 30 ab⁻¹

Summary

- We have designed a search for top squarks for the FCC-hh at 100 TeV
 - Focus on all hadronic channel -> take advantage of the largest BR
- Tagging ultra-boosted top quarks @ 100 TeV needs detector granularity and improved methods:

[Still lots of room for improvement]

"Multi-R+Tracks"

Conclusion:

- We can reach the m_{stop}~8.5 TeV barrier already with 3 ab⁻¹
- Additional luminosity [i.e. 30 ab⁻¹] is important for SUSY hunt:
 - discover top squarks with m_{stop} ~9.5 TeV & exclusion up to ~11 TeV

The FCC-hh physics program will be critical in our discovery or abandonment of SUSY

Back-ups

и