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Summary

We study limitations caused by strong incoherent head-on beam-beam interactions, using
a GPU-based code (CABIN) achieving a speedup of more than 1000. The emittance and
Intensity are monitored to study the impact quantitatively. A new initial distribution in

6D phase space has been developed to study both with a limited number of macroparticles.
FMAs are applied to study the impact qualitatively. Simulation results show agreement with
an MD in the LHC. With the FCC baseline parameters, based on the LHC tunes, a realistic

An attempt to find better working points than (0.31,0.32) (x), requiring |Q4-Q,|=0.01.
The tune scan was done for f*=40 cm, 0,=8 cm, Q'=15, u;=0, 6;,g=300 prad, AQ=0.03.
We found two good alternative working points; (0.315,0.325) and (0.475,0.485) ().
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The hourglass effect causes mixing of the longitudinal S 0.02
and transverse dof, and activates beta-synchrotron
resonances. The odd resonances are not affected.
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