Dynamic Aperture at Collision

Emilia Cruz Alaniz

April 10th, 2018
Results FCC week @ Berlin

• DA at collision energy with errors on triplets no beam-beam and crossing angle on resulted in very low DA.

\[\sim 2\sigma \]

• Non-linear correctors:
 \[a_3/b_3/a_4/b_4/b_6 + b_5/a_5/a_6 \]

\[\sim 11.7\sigma \]

• Acceptable DA with the use of non-linear correctors
 - Follow progress on its reliability (experiments LHC)
 - Find alternative corrections?
October update

CHANGES IN THE LATTICE

• New integrated lattice (97 km).
 • L* shortened to 40 m.
October update

CHANGES IN THE LATTICE

- New integrated lattice (97 km).
- L* shortened to 40 m.

RESULTS

- New lattice resulted in a big increase in DA (~2 sigma – ~10 sigma) using SSC-like spurious dispersion correction.
October update

CHANGES IN THE LATTICE

• New integrated lattice (97 km).
 • L^* shortened to 40 m.

RESULTS

• New lattice resulted in a big increase in DA (~2 sigma – ~10 sigma) using SSC-like spurious dispersion correction.

WORK TO DO

• check what is causing the difference on DA between the old and new lattice.
 - Will give us an indication of problem with last lattice and what to avoid
 - Will give us more flexibility to include more errors in the DA studies.
October update

CHANGES IN THE LATTICE

• New integrated lattice (97 km).
 • L* shortened to 40 m.

RESULTS

• New lattice resulted in a big increase in DA (~2 sigma – ~10 sigma) using SSC-like spurious dispersion correction.

WORK TO DO

• check what is causing the difference on DA between the old and new lattice.

 Phase between main IR ✔

 - Will give us an indication of problem with last lattice and what to avoid
 - Will give us more flexibility to include more errors in the DA studies.

10.03 σ, 10.02 σ, 1.9 σ
DA Studies

- 60 seeds/10^5 turns/5 angles no beam-beam (Talk: Beam-Beam studies T. Peloni)
- Triplet errors IRA/IRG
- Corrections

(Based on scripts of A. Chance, R. Martin and experience LHC: R. Tomas, E. Maclean and T. Persson)
DA Studies

- 60 seeds/10^5 turns/5 angles no beam-beam (Talk: Beam-Beam studies T. Peloni)
- Triplet errors IRA/IRG
- Corrections

 (Based on scripts of A. Chance, R. Martin and experience LHC: R. Tomas, E. Maclean and T. Persson)

 - Chrom+tune correction
 - Spurious dispersion (SSC and HL-LHC like)
 - Crossing IPA and IPG
 - Coupling correction
 - Non-linear correctors
DA Studies

- Chrom+tune correction
- Spurious dispersion (SSC and HL-LHC like)
- Crossing IPA and IPG
- Coupling correction
- Non-linear correctors
- Phase between IPs

• 60 seeds/10^5 turns/5 angles no beam-beam (Talk: Beam-Beam studies T. Peloni)
• Triplet errors IRA/IRG
• Corrections

(Based on scripts of A. Chance, R. Martin and experience LHC: R. Tomas, E. Maclean and T. Persson)
DA Studies

- 60 seeds/10^5 turns/5 angles no beam-beam (Talk: Beam-Beam studies T. Peloni)
- Triplet errors IRA/IRG
- Corrections

(Based on scripts of A. Chance, R. Martin and experience LHC: R. Tomas, E. Maclean and T. Persson)

- Chrom+tune correction
- Spurious dispersion (SSC and HL-LHC like)
- Crossing IPA and IPG
- Coupling correction
- Non-linear correctors
- Phase between IPs

Method 1: Double-tuning
1. Change horizontal and vertical phase from IPA to IPG with trim quads on the right.
2. Adjust tune with trim quads on the left.

Method 2: Phasors
1. Install phasors (elements that only change the phase) in IPL and IPB
2. Change phase with phasor on the right (IPB)
3. Recuperate with phasor on left (IPL)

• 60 seeds/10^5 turns/5 angles no beam-beam
• Triplet errors IRA/IRG
• Corrections
Phase Study

- Study to analyse impact of phase between main IR on DA

- 10 seeds/10^5 turns/5 angles
- Triplet errors, no beam-beam
- Normal corrections
- w/o non-linear correctors
- Double-tuning method
 (Phasors show similar results)
Phase Study

• Study to analyse impact of phase between main IR on DA

 - 10 seeds/10^5 turns/5 angles
 - Triplet errors, no beam-beam
 - Normal corrections
 - w/o non-linear correctors
 - Double-tuning method
 (Phasors show similar results)
Phase Study

• Study to analyse impact of phase between main IR on DA

Results

• Bigger dependency with change in μ_y. Bigger refinement changing μ_x.
• Found two good zones:
 1. $\Delta \mu = [0.2, 0.05]$
 2. $\Delta \mu = [-0.2, -0.4]$
• Run best case for 60 seeds: 16.5 sigma (6.5 σ more than original!)
Phase Study

- Study to analyse impact of phase between main IR on DA
- 10 seeds/10^5 turns/5 angles
- Triplet errors, no beam-beam
- Normal corrections
- w/o non-linear correctors
- Double-tuning method (Phasors show similar results)

Results

- Bigger dependency with change in μ_y. Bigger refinement changing μ_x.
- Found two good zones:
 1. $\Delta\mu=[0.2, 0.05]$
 2. $\Delta\mu=[-0.2, -0.4]$
- Run best case for 60 seeds: 16.5 sigma (6.5 σ more than original!)
- Phase dependency also observed in beam-beam (J. Barranco, T. Peloni Talk: beam-beam effects) and in injection (B. Dalena, Talk: Dynamic Aperture at injection and 3.3 TeV energy choice).
- Not necessarily the same ones. Objective: Find the best compromise at different stages of the operation cycle.
• Study to analyse impact of phase between main IR on DA

Results

• Bigger dependency with change in μ_y. Bigger refinement changing μ_x.
• Found two good zones:
 1. $\Delta \mu = [0.2, 0.05]$
 2. $\Delta \mu = [-0.2, -0.4]$
• Run best case for 60 seeds: **16.5 sigma (6.5 σ more than original!)**
• Phase dependency also observed in beam-beam (J. Barranco, T. Peloni Talk: beam-beam effects) and in injection (B. Dalena, Talk: Dynamic Aperture at injection and 3.3 TeV energy choice).
• Not necessarily the same ones. Objective: Find the best compromise at different stages of the operation cycle.
• Higher DA gives flexibility to amplify study: include arc and dipole errors.
• Add Errors:
 - Triplet Errors
 - Arc Errors + correction (B. Dalena, Talk: Dynamic Aperture at injection and 3.3 TeV energy choice)
 - Separation/Recombination dipoles errors (R. Martin)

• Rest of study stays the same: 60 seeds/10^5 turns/corrections

• When adding errors and non-linear correctors ‘colour zones’ stay consistent
Expanded Study

• Add Errors:
 - **Triplet** Errors
 - **Arc Errors** + correction (B. Dalena, Talk: Dynamic Aperture at injection and 3.3 TeV energy choice)
 - Separation/Recombination **dipoles** errors (R. Martin)

• Rest of study stays the same: 60 seeds/10^5 turns/corrections

• When adding errors and non-linear correctors ‘colour zones’ stay consistent

Results

Original case: 5.8 σ

+ Non-linear corr: 7.5 σ
+ Optimize phase: 9.55 σ
+ non-linear+opt phase: 15.9 σ
Expanded Study

• Add Errors:
 - **Triplet** Errors
 - **Arc Errors** + correction (B. Dalena, Talk: Dynamic Aperture at injection and 3.3 TeV energy choice)
 - Separation/Recombination **dipoles** errors (R. Martin)

• Rest of study stays the same: 60 seeds/10^5 turns/corrections

• When adding errors and non-linear correctors ‘colour zones’ stay consistent

 Results

 Original case: [---] 5.8 σ

 + Non-linear corr: [---] 7.5 σ

 + Optimize phase: [---] 9.55 σ

 + non-linear+opt phase: [---] 15.9 σ

• Check other lattice options?
(Even more) expanded Study

Expand study to include:

1. Other lattice options ($\beta^*=0.15, 0.2, 1.1 \text{ m in IPA and IPG}$)

 Draw line when non-linear correctors are needed?

Talk: Experimental Insertions
R. Martin
(Even more) expanded Study

Expand study to include:

1. Other lattice options ($\beta^*=0.15, 0.2, 1.1$ m in IPA and IPG)

 Draw line when non-linear correctors are needed?

2. FCC-eh implementation $\beta^*=0.3/0.3/0.3$ m (IPA/G/L) and $\beta^*=3$ m (IPB)

 DA gets affected?

Talk: Experimental Insertions
R. Martin

Talk: Interaction Region FCC-eh
R. Martin
Expand study to include:

1. Other lattice options ($\beta^*=0.15, 0.2, 1.1$ m in IPA and IPG)
 Draw line when non-linear correctors are needed?

2. FCC-eh implementation $\beta^*=0.3/0.3/0.3$ m (IPA/G/L) and $\beta^*=3$ m (IPB)
 DA gets affected?

3. Alternative IR design round and flat
 Phase Dependency? Same pattern?
 Good DA?

Talk: Interaction Region FCC-eh
R. Martin

Talk: Flat beam alternative
J. Abelleira

Poster: An optimised Alternative Triplet for the final Focus of the FCC-hh.
L. Van Riesen-Haupt
1. Other lattice options ($\beta^* = 0.15, 0.2, 0.3, 1.1 \text{ m}$)

- Draw line when non-linear correctors are needed?

- Low DA in $\beta^* = 0.15$ and 0.2 m
1. Other lattice options ($\beta^*=0.15, 0.2, 0.3, 1.1$ m)

Draw line when non-linear correctors are needed?

- Low DA in $\beta^*=0.15$ and 0.2 m
- Once phase is optimized DA grows consistently
(Even more) expanded Study

1. Other lattice options ($\beta^*=0.15, 0.2, 0.3, 1.1$ m)

Draw line when non-linear correctors are needed?

- Low DA in $\beta^*=0.15$ and 0.2 m
- Once phase is optimized DA grows consistently
- Adding non linear correctors brings $\beta^*=0.2$ m to more acceptable levels
- $\beta^*=0.15$ m still challenging but likely to improve with improved phase.
1. Other lattice options ($\beta^*=0.15, 0.2, 0.3, 1.1$ m)

Draw line when non-linear correctors are needed?

- Low DA in $\beta^*=0.15$ and 0.2 m
- Once phase is optimized DA grows consistently
- Adding non linear correctors brings $\beta^*=0.2$ m to more acceptable levels
- $\beta^*=0.15$ m still challenging but likely to improve with improved phase.

- Using non-linear correctors becomes more crucial for cases $\beta^*=0.15$ and 0.2 m
2. FCC-EH implementation (Roman) $\beta^*=0.3/0.3/0.3$ m (IPA/G/L) $\beta^*=3$ m (IPB)
 Same errors than before, no errors on FCC-EH IR yet.
 DA gets affected?

3. Alternative IR design (Leon/Jose) $\beta^*=0.3/0.3$ (IPA/G) $\beta^*=3$ m (IPB/IPL)
 Phase Dependency? Same pattern? Good DA?
2. FCC-eh implementation (Roman) $\beta^*=0.3/0.3/0.3$ m (IPA/G/L) $\beta^*=3$ m (IPB)
 Same errors than before, no errors on FCC-eh IR yet.
 DA gets affected?

 Default case:
 $< 1 \sigma$

3. Alternative IR design (Leon/Jose) $\beta^*=0.3/0.3$ (IPA/G) $\beta^*=3$ m (IPB/IPL)
 Phase Dependency? Same pattern? Good DA?

 Default case:
 $< 1 \sigma$
(Even more) expanded Study

2. **FCC-eh implementation (Roman)** $\beta^*=0.3/0.3/0.3$ m (IPA/G/L) $\beta^*=3$ m (IPB)

 Same errors than before, no errors on FCC-eh IR yet.

 DA gets affected?

 Default case:

 $< 1 \sigma$

 Quick phase check:

 Follows similar shape

 Increase DA to similar values

 10.1σ

3. **Alternative IR design (Leon/Jose)** $\beta^*=0.3/0.3$ (IPA/G) $\beta^*=3$ m (IPB/IPL)

 Phase Dependency? Same pattern? Good DA?

 Default case:

 $< 1 \sigma$
2. FCC-eh implementation (Roman) $\beta^*=0.3/0.3/0.3$ m (IPA/G/L) $\beta^*=3$ m (IPB)
 Same errors than before, no errors on FCC-eh IR yet.
 - DA gets affected?
 - Default case: $< 1 \sigma$

 Quick phase check:
 - Follows similar shape
 - Increase DA to similar values
 - 10.1 σ
 - Continue study with complete set of errors

3. Alternative IR design (Leon/Jose) $\beta^*=0.3/0.3$ (IPA/G) $\beta^*=3$ m (IPB/IPL)
 - Phase Dependency? Same pattern? Good DA?

 Default case: $< 1 \sigma$
2. FCC-eh implementation (Roman) $\beta^*=0.3/0.3/0.3$ m (IPA/G/L) $\beta^*=3$ m (IPB)
 Same errors than before, no errors on FCC-eh IR yet.
 DA gets affected?

 Default case:
 $< 1 \sigma$

 Quick phase check:
 Follows similar shape
 Increase DA to similar values
 10.1σ

 Continue study with complete set of errors

3. Alternative IR design (Leon/Jose) $\beta^*=0.3/0.3$ (IPA/G) $\beta^*=3$ m (IPB/IPL)
 Phase Dependency? Same pattern? Good DA?

 Default case:
 $< 1 \sigma$

 Quick phase check:
 Different shape
 Not strong dependency in ‘y’
 DA looks good!
 13.6σ
(Even more) expanded Study

2. FCC-eh implementation (Roman) $\beta^* = 0.3/0.3/0.3$ m (IPA/G/L) $\beta^* = 3$ m (IPB)
 Same errors than before, no errors on FCC-eh IR yet.
 DA gets affected?

 Default case:
 $< 1 \sigma$

 Quick phase check:

 Follows similar shape
 Increase DA to similar values

 10.1σ

 Continue study with complete set of errors

3. Alternative IR design (Leon/Jose) $\beta^* = 0.3/0.3$ (IPA/G) $\beta^* = 3$ m (IPB/IPL)
 Phase Dependency? Same pattern? Good DA?

 Default case:
 $< 1 \sigma$

 Quick phase check:

 Different shape
 Not strong dependency in ‘y’
 DA looks good!

 13.6σ

3b. Alternative IR design (Leon/Jose) Flat optics $\beta^* = 1.2/0.15$ (IPA/IPG)

10.6σ
Conclusions

• Study at collision without beam-beam has been expanded to include further errors: triplet errors, dipole arc errors, separation and recombination dipoles
Conclusions

- Study at collision without beam-beam has been expanded to include further errors: triplet errors, dipole arc errors, separation and recombination dipoles

\[25 \sigma \quad \beta^* = 1.1 \text{ m} \]

w/o non-linear correctors
Conclusions

- Study at collision without beam-beam has been expanded to include further errors: triplet errors, dipole arc errors, separation and recombination dipoles

\[25 \sigma \quad - \quad - \quad - \quad - \quad - \quad \beta^* = 1.1 \text{ m} \quad \text{w/o non-linear correctors} \]

\[10-13 \sigma \quad - \quad - \quad - \quad - \quad - \quad \beta^* = 0.3 \text{ normal and alternative design} \]
- Flat beams
- FCC-eh IR

\text{w/o non-linear correctors}
Conclusions

- Study at collision without beam-beam has been expanded to include further errors: triplet errors, dipole arc errors, separation and recombination dipoles

\[25 \sigma \quad \beta^* = 1.1 \text{ m} \quad \text{w/o non-linear correctors} \]

\[10-13 \sigma \quad \beta^* = 0.3 \text{ normal and alternative design} \]

\[10-13 \sigma \quad \text{Flat beams} \quad \text{w/o non-linear correctors} \]

\[10-13 \sigma \quad \text{FCC-eh IR} \]

\[4-6 \sigma \quad \beta^* = 0.15, 0.2 \text{ m} \quad \text{w/o non-linear correctors} \]
Conclusions

- Study at collision without beam-beam has been expanded to include further errors: triplet errors, dipole arc errors, separation and recombination dipoles

\[
\begin{align*}
25 \sigma & - \beta^*=1.1 \text{ m} \quad \text{w/o non-linear correctors} \\
14-16 \sigma & - \beta^*=0.2 \text{ and } 0.3 \text{ m} \quad \text{with non-linear correctors} \\
& - \text{Expected the same for alternative design, flat beams and FCC-eh} \\
10-13 \sigma & - \beta^*=0.3 \text{ normal and alternative design} \\
& - \text{Flat beams} \quad \text{w/o non-linear correctors} \\
& - \text{FCC-eh IR} \\
4-6 \sigma & - \beta^*=0.15, 0.2 \text{ m} \quad \text{w/o non-linear correctors}
\end{align*}
\]
Conclusions

- Study at collision without beam-beam has been expanded to include further errors: triplet errors, dipole arc errors, separation and recombination dipoles

\[
\begin{align*}
25 \sigma & \quad \beta^* = 1.1 \text{ m} \\
14-16 \sigma & \quad \beta^* = 0.2 \text{ and } 0.3 \text{ m} \\
10-13 \sigma & \quad \beta^* = 0.3 \text{ normal and alternative design} \\
4-6 \sigma & \quad \beta^* = 0.15, 0.2 \text{ m}
\end{align*}
\]

- Expected the same for alternative design, flat beams and FCC-eh

- In conclusion with the phase scan optimization almost all studies (except for $\beta^* = 0.15, 0.2 \text{ m}$) show good results, even without non-linear correctors.
- Check compatibility with beam-beam studies. Find best phase optimization for different stages of operation cycle.
Conclusions

- Study at collision without beam-beam has been expanded to include further errors: triplet errors, dipole arc errors, separation and recombination dipoles

<table>
<thead>
<tr>
<th>σ</th>
<th>β*</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>β*=1.1 m</td>
<td></td>
<td></td>
<td>w/o non-linear correctors</td>
</tr>
<tr>
<td>14-16</td>
<td>β*=0.2 and 0.3 m</td>
<td></td>
<td></td>
<td>with non-linear correctors</td>
</tr>
<tr>
<td>10-13</td>
<td>β*=0.3 normal and alternative design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-6</td>
<td>β*=0.15, 0.2 m</td>
<td></td>
<td></td>
<td>w/o non-linear correctors</td>
</tr>
</tbody>
</table>

- Expected the same for alternative design, flat beams and FCC-eh

- In conclusion with the phase scan optimization almost all studies (except for β*=0.15, 0.2 m) show good results, even without non-linear correctors.
- Check compatibility with beam-beam studies. Find best phase optimization for different stages of operation cycle.
- Non-linear correctors improved results for all cases, useful to give safety margin but particularly important for the β*=0.2 m.
- More extensive study to be done for the challenging case β*=0.15 and for the FCC-eh in case new errors affect DA.
Thanks!