FCC week, Amsterdam

Longitudinal beam dynamics and RF requirements

E. Shaposhnikova and I. Karpov

12.04.2018

With input from S. Arsenyev, R. Calaga, D. Schulte

Main input ring & beam parameters

Ring

- Circumference: $\sim 100 \text{ km } (97.75 \text{ km})$
- Energy: 3.3 TeV \rightarrow 50 TeV
- Transition gamma: $\gamma_t = 99 \& 71$
- Energy loss per turn @50 TeV: $U_0 = 4.6$ MeV

Beam

- Bunch spacings: 25 ns & 5 ns
- Bunch length during physics: $\sigma_z = 8$ cm ($\tau_{4\sigma} = 1.07$ ns)
- Bunch intensity: 1.0x10¹¹
- Maximum longitudinal emittance (for transverse beam stability)

RF and longitudinal beam parameters

- √ Optimum RF frequency → 400 MHz
- **v** Harmonic number (ring size) \rightarrow h = 130680 (97.75 km) from synchronization with injectors

- Minimum RF voltage
 - @50 TeV
 - during ramp
- Longitudinal emittance and bunch length

Criteria used to define RF voltage

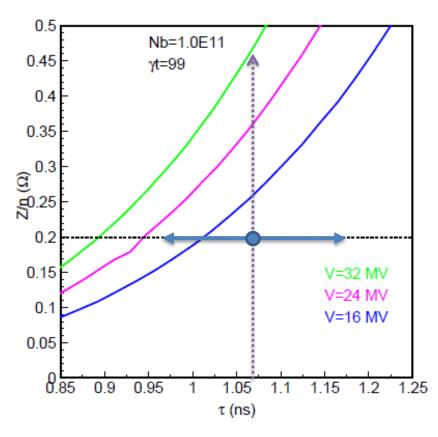
Filling of the RF bucket:

- \rightarrow maximum momentum filling factor qp = 0.9 during ramp and qp = 0.8 in physics (qp = $2\sigma_p$ /bucket height)
- Longitudinal emittance on the flat top:
 - \rightarrow in 2016 was based on loss of Landau damping threshold for N = 1x10¹¹ and longitudinal effective impedance ImZ/n = 0.2 Ω (for LHC calculated and measured ImZ/n = 0.1 Ω).
 - → in 2017 was based on maximizing transverse stability (TMCI) at 50 TeV
- Longitudinal emittance during ramp:
 - \rightarrow in 2016 scaled $\sim E^{1/2}$ from the top value for $(ImZ/n)_{th} = const$
 - → in 2017 optimized for transverse beam stability

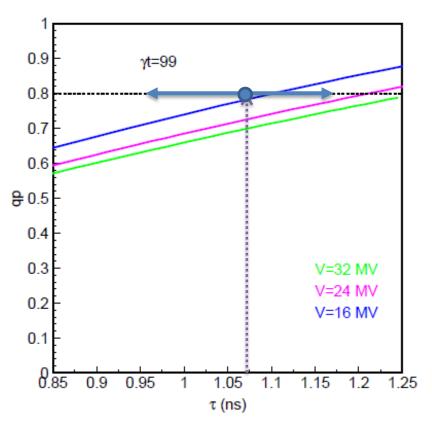
Beam stability limits

Loss of Landau damping (F. Sacherer, 1973)

$$|\text{Im}Z|/n < \frac{F|\eta|E}{eI_{b}\beta^{2}} \left(\frac{\Delta E}{E}\right)^{2} \frac{\Delta \omega_{s}}{\omega_{s}} f_{0}\tau$$

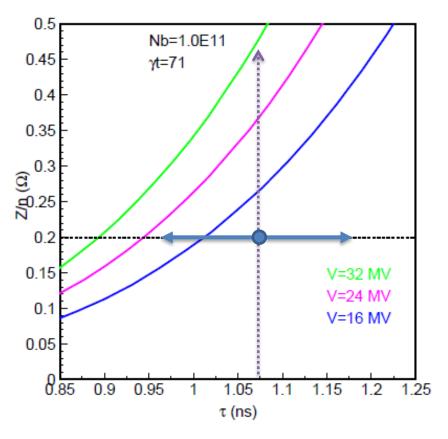

TMCI threshold for short bunches (B. Zotter)

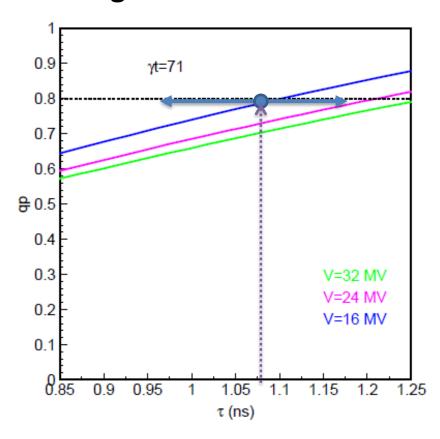
$$\beta_{\perp} Z_{\perp} < \frac{2E\tau\omega_{s}}{eI_{h}}$$


E – beam energy, $I_{\rm b}$ – bunch current, ω_s – synchrotron frequency, τ – bunch length, f_0 – revolution frequency, η – slip factor, F \sim 1 – form factor, β_{\perp} – beta function

Loss of Landau damping for $\gamma_t = 99$, 400 MHz RF @ 50 TeV

Loss of Landau damping


Filling factor in momentum


 \rightarrow V = 24 MV is OK with margin for ±10% bunch length spread and safety factor \sim 3 (in LHC F = 1.8 and HL-LHC impedance ImZ/n = 0.11 Ω)

Loss of Landau damping for $\gamma_t = 71$, 400 MHz RF @ 50 TeV

Loss of Landau damping

Filling factor in momentum

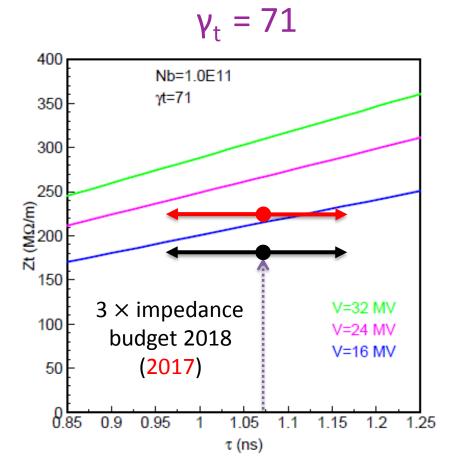
 \rightarrow V = 24 MV is OK with margin for ±10% bunch length spread and safety factor \sim 3 (in LHC F = 1.8 and HL-LHC impedance ImZ/n = 0.11 Ω)

TMCI threshold @ 50 TeV in two optics

$$V_t = 99$$

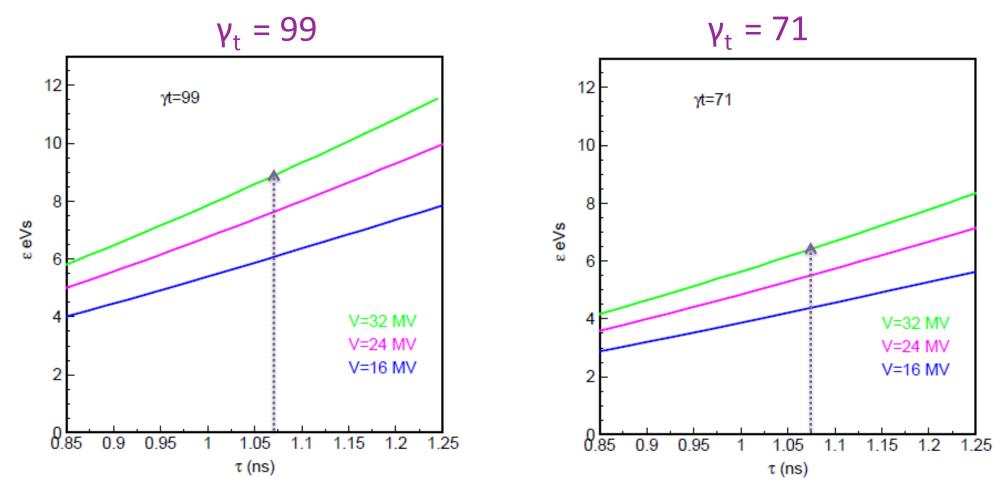
Nb=1.0E11
 $v_t = 99$

Nb=1.0E11
 $v_t = 99$


Nb=1.0E11
 $v_t = 99$
 $v_t = 99$

Nb=1.0E11
 $v_t = 99$

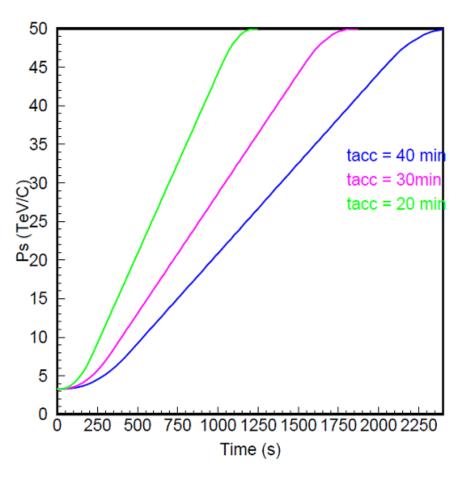
Nb=1.0E11
 $v_t = 99$
 $v_t = 99$


Nb=1.0E11
 $v_t = 99$

Nb=1.0E

- \rightarrow Impedance budget at 50 TeV: \sim 60 M Ω /m in 2018 (\sim 75 M Ω /m in 2017)
- \rightarrow V = 32 MV is OK for γ_t = 99 with margin for ±10% bunch length spread
- \rightarrow For $\gamma_t = 71$ all voltages are acceptable

Longitudinal emittance @50 TeV in two optics



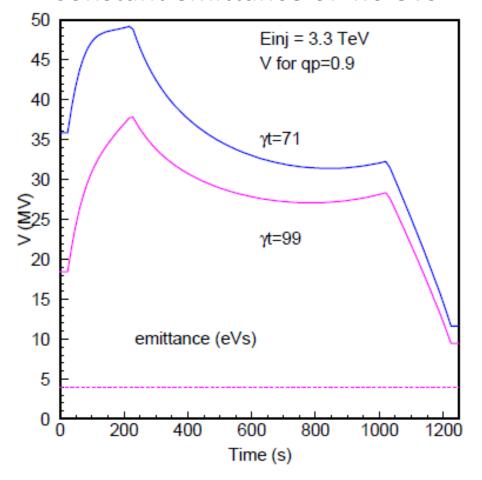
 \rightarrow Significantly smaller longitudinal emittance for beam stability in 32 MV γ_t = 71 optics for 1.07 ns bunch length (4 σ_t)

Output from analysis at 50 TeV

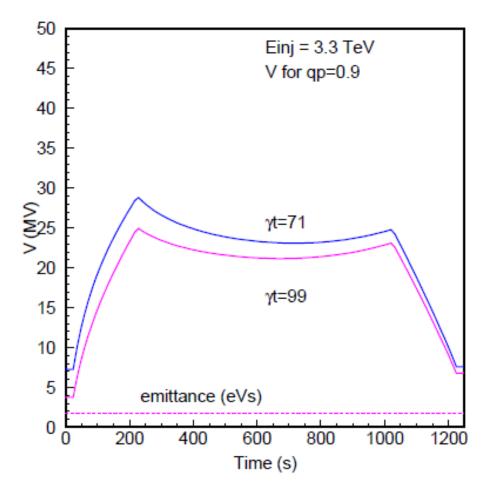
- Longitudinal emittance and minimum voltage at 50 TeV:
 - \sim 9 eVs (32 MV) in γ_t = 99 (defined by TMCI threshold)
 - ~ 5 eVs (24 MV) in γ_t = 71 (defined by loss of Landau Damping)
- Controlled emittance blow-up need during physics due to fast bunch length reduction since longitudinal bunch stability can be quickly lost (better with higher voltage) $N_{th} \sim \epsilon^{2.5} = \epsilon_0 e^{-2.5t/0.54}$
- → the 800 MHz RF system for longitudinal beam stability?

Acceleration ramp

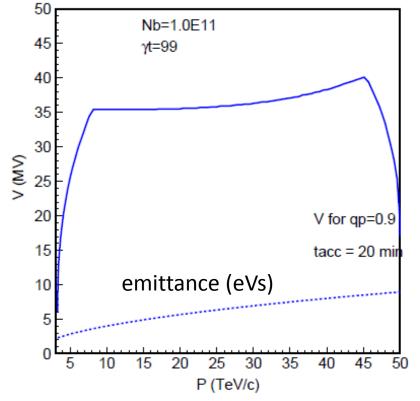
Magnetic ramp composed of

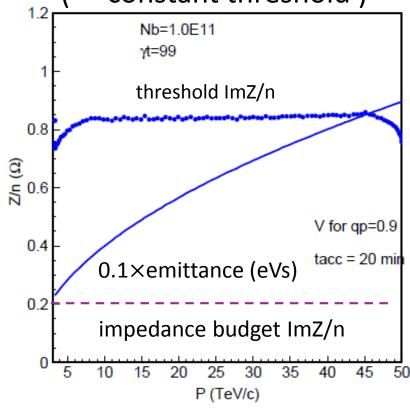

- parabolic part(0.1)
- linear part (0.8)
- parabolic part (0.1)

Injection at 3.3 TeV from LHC: max emittance of 4.0 eVs


Voltage during ramp depends on acceleration time and emittance → 20 min ramp is assumed in following

RF voltage for constant emittance and qp in two optics


Constant emittance of 1.8 eVs


→ Controlled emittance blow up during the ramp is required

Ramp with emittance blow-up: γ_t =99

RF voltage program: emittance blow-up $\propto E^{1/2}$ (2.3 \rightarrow 9.0 eVs)

Loss of Landau damping (~ constant threshold)

- → Maximum voltage during ramp ~ 40 MV
- → Significant margin for loss of Landau damping during the ramp

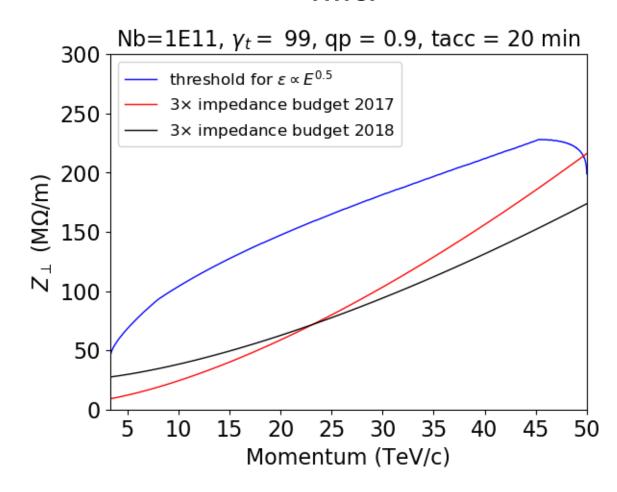
Transverse beam stability limit: γ_t =99

Effective transverse impedance during ramp (impedance database April 2018):

3.3 TeV:
$$\beta_{H,V}$$
 = 142.36, 143.63m

 $8.6 \,\mathrm{M}\Omega/\mathrm{m} - \mathrm{H}$

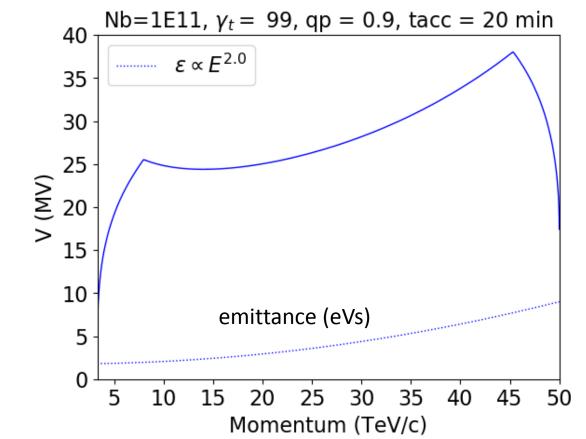
 $9.7 M\Omega/m - V$

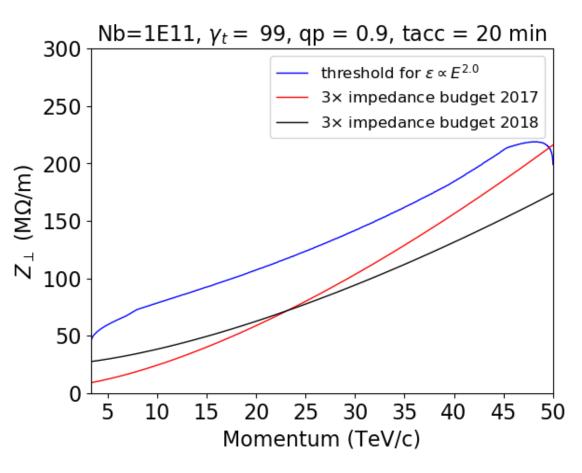

50 TeV:
$$β$$
_{H,V} = 142.32, 143.62m

 $58.6 M\Omega/m - H$

 $57.2 M\Omega/m - V$

$$\rightarrow Z_{\perp} = 8.3 + 0.14 \text{ E[TeV]}^{3/2} [M\Omega/m]$$

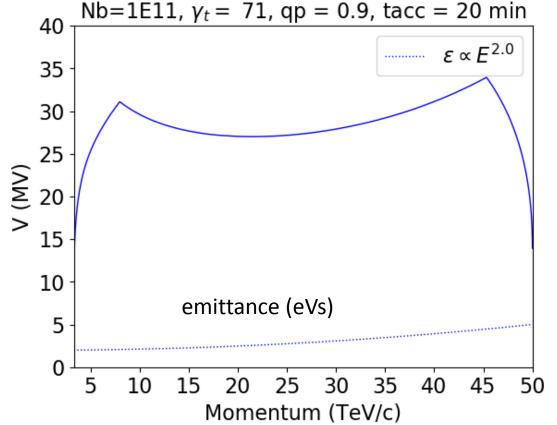

TMCI


Ramp with emittance blow-up: γ_t =99

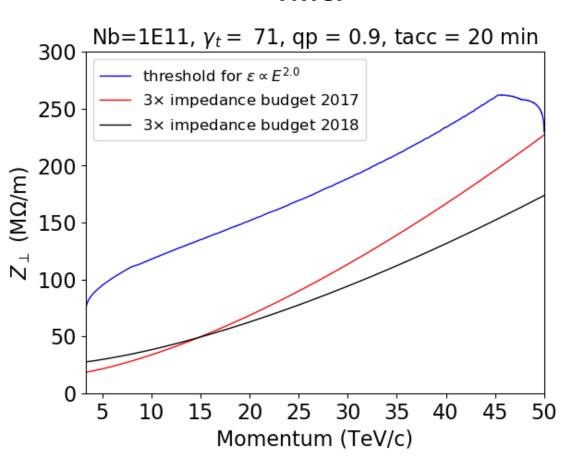
RF voltage program:

emittance blow-up $\propto E^2$ (1.8 \rightarrow 9.0 eVs)

TMCI

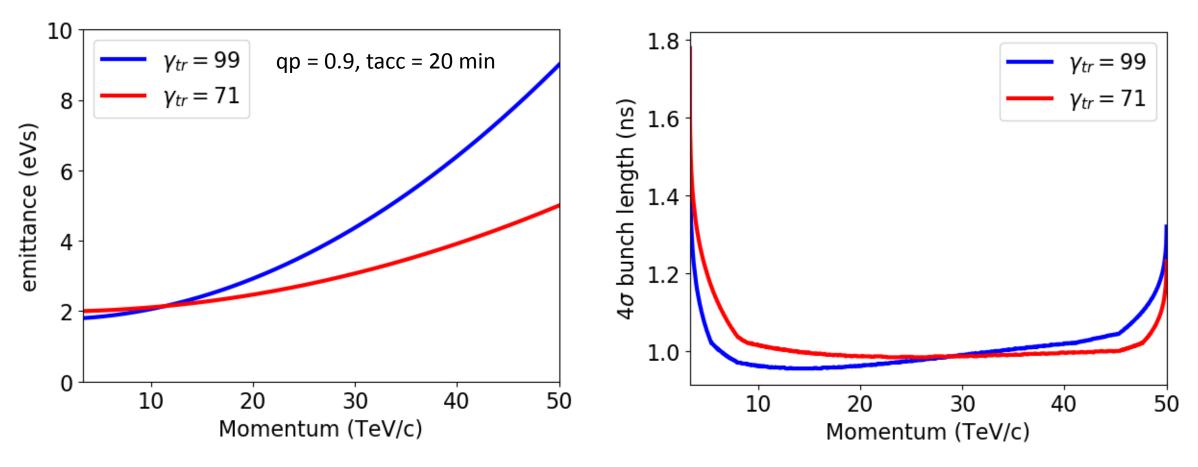


→ Maximum voltage during ramp ~ 40 MV


Ramp with emittance blow-up: $\gamma_t = 71$

RF voltage program: tance blow-up $\propto F^2 (2.0 \rightarrow 5.0 \text{ eVs})$

emittance blow-up $\propto E^2$ (2.0 \rightarrow 5.0 eVs)



TMCI

→ Maximum voltage during ramp ~ 34 MV with smaller emittances

Bunch parameters during ramp

Voltage during ramp can be reduced with less emittance blow-up, but bunch length will be < 1 ns - issues for beam induced heating?

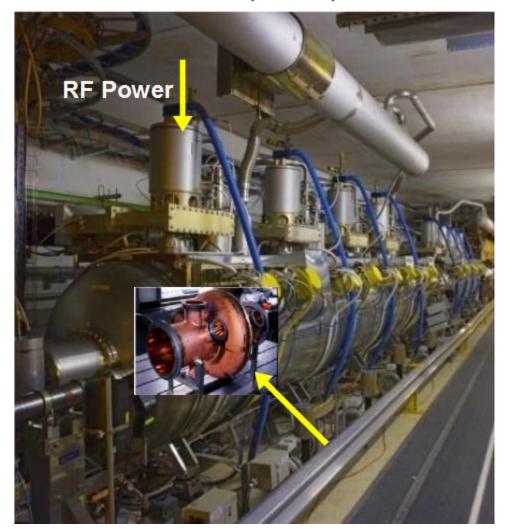
FCC-hh RF system (preliminary)

- 400 MHz single-cell cavity (LHC-type), similar to FCC-ee Z machine
- 20 cavities/beam with 2 MV/cavity or 40 with 1 MV/cav.
- $f_0 \sim 3$ kHz, ½ detuning or optimum detuning \sim several kHz \rightarrow coupled bunch instabilities due to fundamental impedance \rightarrow strong feedback.
- Final RF power requirements depend on
 - total voltage V and power loss (SR)
 - acceleration rate
 - longitudinal emittance (for transverse stability)
 - number of RF cavities (voltage/cavity: 1 2 MV)
 - coupling Q_L

LHC-ACS, 400MHz

400 MHz(Nb-Cu)

8 SRF cavities/beam (total 16)


Frequency: 400 MHz

Voltage: 2 MV/cavity

Tuning: 240 kHz/mm, t ∼ secs

4-HOM couplers (1 kW-max)

CW high power variable coupler $1x10^4 < Q_{ext} < 1x10^5$ Klystron driven (up to 300 kW)

Summary

- For the FCC-hh, an optimum main RF frequency to achieve required bunch length and stability at 50 TeV is 400 MHz
- Required voltage strongly depends on optics (for the same emittance and bunch length)
- For 20 min acceleration ramp, V=38 MV needed to accelerate bunches with emittance of 1.8 eVs at 3.3 TeV and controlled emittance blow-up to 9.0 eVs during ramp
- At flat top: continuous blow-up needed in physics → additional 800
 MHz RF system would give more flexibility