

Coupling impedance of the FCC-hh cold beamscreen

Sergey Arsenyev

FCC week 2018 in Amsterdam 12 April, 2018

What is cold beamscreen and what is coupling impedance?

Higher coupling impedance

=

lower maximum beam current before the beam goes unstable

Sources of beamscreen impedance

Role of beamscreen in the impedance model (1/2)

Beamscreen-related impedance:

- Resistive wall
- E-cloud surface treatment
- Pumping holes
- Interconnects

Effective impedance for the coupled bunch instability (y-plane)

Role of beamscreen in the impedance model (2/2)

Beamscreen-related impedance:

- Resistive wall
- E-cloud surface treatment
- Pumping holes
- Interconnects

Resistive wall impedance of beamscreen

E-cloud surface treatment (1/2)

Amorphous carbon or TiN coating

~30% impedance increase at 1 GHz

Laser treatment

Unknown impedance increase

E-cloud surface treatment (2/2)

Interpretation of a rough surface

Conductivity vs depth into the wall

Pumping holes (1/3)

FCC

Holes take up 22% of surface

Pumping holes (2/3)

An estimate based on the traveling wave method for the slit size 7.5 mm:

 $Im(Z_x)_{total} \le 0.1 \, M\Omega/m$

All 10.5 million holes together

Pumping holes (3/3)

Only simulate one period!

- Find dispersion of N bands in one period
- For each band find intersection with the synchronous line
- For each intersection find $(R/Q)_{||}$, $(R/Q)_{\perp}$
- Use the resonator model to obtain impedances

$$Z_{||}(f) \approx i \sum_{n=1}^{N} \alpha_n \frac{f}{f_n} \left(\frac{R}{Q}\right)_{||}^{w}$$

$$Z_{\perp}(f) \approx i \sum_{n=1}^{N} \alpha_n \left(\frac{R}{Q}\right)_{\perp}^{w}$$

Correction due to non-zero group velocity $\alpha_n = \frac{1}{1 - v_g/c}$

Interconnects

Imaginary part of dipolar impedance for all 5516 interconnects

Conclusions

Transverse impedance of the

• interconnects —————OK, but can be better

Open questions:

- Power dissipation through the pumping holes (long. impedance)
- Impedance of a laser-treated surface
- Resistive impedance of interconnects (higher temperature)