Faster ramping of LHC in 2017 and prospects for lower energy injection into LHC in 2018

Attilio Milanese, Matteo Solfaroli

11 Apr. 2018

A faster ramp of the LHC is an ingredient to make it a (more attractive) High Energy Booster for FCC

3.3 TeV is taken as baseline injection energy for FCC-hh

A ramp in the LHC involves 1700+ electrical circuits: the limiting ones – in terms of ramp rate – are the large 13 kA

8 main dipoles (MB)

With the standard PELP ramp, going to 3.3 TeV takes 10'43"

PELP function $I_{inj} = 760 \text{ A}$ $I_{flt} = 5573 \text{ A}$ $dl/dt_{max} = 10 \text{ A/s}$ $\Delta I_{snb} = 12 \text{ A}$ $dl/dt_{snb} = 0.9 \text{ A/s}$ $\Delta I_{p2} = 0.02 \text{ I}_{flt}$ $B_{exp,max} = 1.6 \text{ T}$

parameters used up to 2017

To speed up the ramp, we proposed to:

- increase dI/dt_{max} (power converters voltage upgrade)
- modify the ramp function

PPLP ramp in 2017 (MD and operation) The PPLP ramp to 6.5 TeV is ≈10% shorter than the PELP ramp

On 24/07/2017 we had an MD to test this PPLP ramp

- 1) Pilot, long blow-up ON: lost ≈40% during first 400 s [RF blow-up problem]
- 2) Pilot, NO long blow-up, tune/orbit fed-forward: GOOD!
- 3) INDIVs, long blow-up ON, orbit/tune (re)fed-forward, Xing & sep IN: GOOD!
- 4) Pilot, tune and energy feedbacks OFF, Xing & sep IN, RF modulation ON: GOOD!

The peak losses (5E-5 Gy/s, on TCP.IR3) were comparable with what observed in PELP ramps and there was no degradation in beam quality

No losses are observed after \approx 25 s, nor on the (faster) settling parabola

We then used this PPLP ramp in operation for a 2.51 TeV run with high intensity proton beams in Nov. 2017

The 225 GeV injection and ramp test (the Mother-of-All LHC MD?)

Brennan Goddard, Matteo Solfaroli, Ezio Todesco, Davide Tommasini, Jan Uythoven

This 225 GeV injection MD is relevant for FCC-hh and HE-LHC, and LHC itself

- It was recommended by the FCC injection energy review (Oct. 2015): one of the crucial parameters in the overall design is the injection energy into the FCC-hh collider
- Is a ×30 energy swing feasible in the LHC? If so, it might be the case also for HE-LHC and FCC, with the proper scaling considering the magnet technology and injection field
- It could also be beneficial for operating the LHC, to increase knowledge on dynamic magnetic effects, and to have more relaxed injection parameters (transfer lines, kickers)

This (lengthy) MD involves several main phases

Several systems are impacted and need a reconfiguration

Effects related to persistent currents in the main sc magnets affect B_1 and b_3 (MB) and B_2 (MQ): here we focus on b_3

In terms of b_3 , injecting at (and ramping from) 225 GeV instead of 450 GeV is about 3 times harder, overall...

Courtesy of Ezio Todesco

... and also locally, in the decay - snapback part: we are still well above the knee

[details are taken from 2017 measurements on the two apertures of dipole 4001]

The change in b₃ implies a (challenging) change in chroma

- In the LHC (450 GeV to high energy) the swing of chroma is 360 units: 8 units $\Delta b_3 \times 45$ chroma units/ b_3 ; today this is mastered in two step:
- FiDeL setting (giving a 5-10% residual error)
- feed forward based on chroma measurements
- In FCC with 3 TeV injection we aim at 1000 units swing of chroma during ramp: ≈ 10 units of $\Delta b_3 \times 90$ chroma units/ b_3
- the sensitivity on b_3 doubles due to longer cells
- With this MD in the LHC we explore the same chroma swing thanks to a 3 times larger b₃

Conclusions

Conclusions

- In 2017 we performed a successful LHC MD to test the PPLP ramp
- This is a key ingredient in speeding up LHC ramps up to intermediate energies
- In fact, it was already implemented in Nov. 2017 for 2.51 TeV runs
- The PPLP ramp scheme is the baseline for 6.5 TeV operation in 2018

- We have been studying a more ambitious LHC MD to inject at and ramp from 225 GeV
- A decision from the management for an implementation this year is pending

Thank you